[div class=attrib]From Discover:[end-div]
The most astonishing thing about the Large Hadron Collider (LHC), the ring-shaped particle accelerator that revved up for the first time on September 10 in a tunnel near Geneva, is that it ever got built. Twenty-six nations pitched in more than $8 billion to fund the project. Then CERN—the European Organization for Nuclear Research—enlisted the help of 5,000 scientists and engineers to construct a machine of unprecedented size, complexity, and ambition.
Measuring almost 17 miles in circumference, the LHC uses 9,300 superconducting magnets, cooled by liquid helium to 1.9 degrees Kelvin above absolute zero (–271.3º C.), to accelerate two streams of protons in opposite directions. It has detectors as big as apartment buildings to find out what happens when these protons cross paths and collide at 99.999999 percent of the speed of light. Yet roughly the same percentage of the human race has no idea what the LHC’s purpose is. Might it destroy the earth by spawning tiny, ravenous black holes? (Not a chance, physicists say. Collisions more energetic than the ones at the LHC happen naturally all the time, and we are still here.)
In fact, the goal of the LHC is at once simple and grandiose: It was created to discover new particles. One of the most sought of these is the Higgs boson, also known as the God particle because, according to current theory, it endowed all other particles with mass. Or perhaps the LHC will find “supersymmetric” particles, exotic partners to known particles like electrons and quarks. Such a discovery would be a big step toward developing a unified description of the four fundamental forces—the “theory of everything” that would explain all the basic interactions in the universe. As a bonus, some of those supersymmetric particles might turn out to be dark matter, the unseen stuff that seems to hold galaxies together.
[div class=attrib]More from theSource here.[end-div]
[div class=attrib] Image courtesy of Maximillien Brice/CERN.[end-div]