[div class=attrib]From Scientific American:[end-div]
Well, perhaps your great-to-the-hundred-millionth-grandmother was.
Understanding the origins of life and the mechanics of the earliest beginnings of life is as important for the quest to unravel the Earth’s biological history as it is for the quest to seek out other life in the universe. We’re pretty confident that single-celled organisms – bacteria and archaea – were the first ‘creatures’ to slither around on this planet, but what happened before that is a matter of intense and often controversial debate.
One possibility for a precursor to these organisms was a world without DNA, but with the bare bone molecular pieces that would eventually result in the evolutionary move to DNA and its associated machinery. This idea was put forward by an influential paper in the journal Nature in 1986 by Walter Gilbert (winner of a Nobel in Chemistry), who fleshed out an idea by Carl Woese – who had earlier identified the Archaea as a distinct branch of life. This ancient biomolecular system was called the RNA-world, since it consists of ribonucleic acid sequences (RNA) but lacks the permanent storage mechanisms of deoxyribonucleic acids (DNA).
A key part of the RNA-world hypothesis is that in addition to carrying reproducible information in their sequences, RNA molecules can also perform the duties of enzymes in catalyzing reactions – sustaining a busy, self-replicating, evolving ecosystem. In this picture RNA evolves away until eventually items like proteins come onto the scene, at which point things can really gear up towards more complex and familiar life. It’s an appealing picture for the stepping-stones to life as we know it.
In modern organisms a very complex molecular structure called the ribosome is the critical machine that reads the information in a piece of messenger-RNA (that has spawned off the original DNA) and then assembles proteins according to this blueprint by snatching amino acids out of a cell’s environment and putting them together. Ribosomes are amazing, they’re also composed of a mix of large numbers of RNA molecules and protein molecules.
But there’s a possible catch to all this, and it relates to the idea of a protein-free RNA-world some 4 billion years ago.
[div class=attrib]Read more after the jump:[end-div]
[div class=attrib]Image: RNA molecule. Courtesy of Wired / Universitat Pampeu Fabra.[end-div]