Yesterday, May 10, 2013, scientists published new measures of atmospheric carbon dioxide (CO2). For the first time in human history CO2 levels reached an average of 400 parts per million (ppm). This is particularly troubling since CO2 has long been known as the most potent heat trapping component of the atmosphere. The sobering milestone was recorded from the Mauna Loa Observatory in Hawaii — monitoring has been underway at the site since the mid-1950s.
This has many climate scientists re-doubling their efforts to warn of the consequences of climate change, which is believed to be driven by human activity and specifically the generation of atmospheric CO2 in ever increasing quantities. But not to be outdone, the venerable Wall Street Journal — seldom known for its well-reasoned scientific journalism — chimed in with an op-ed on the subject. According to the WSJ we have nothing to worry about because increased levels of CO2 are good for certain crops and the Earth had historically much higher levels of CO2 (though pre-humanity).
Ashutosh Jogalekar over at The Curious Wavefunction dissects the WSJ article line by line:
Since we were discussing the differences between climate change “skeptics” and “deniers” (or “denialists”, whatever you want to call them) the other day this piece is timely. The Wall Street Journal is not exactly known for reasoned discussion of climate change, but this Op-Ed piece may set a new standard even for its own naysayers and skeptics. It’s a piece by William Happer and Harrison Schmitt that’s so one-sided, sparse on detail, misleading and ultimately pointless that I am wondering if it’s a spoof.
Happer and Schmitt’s thesis can be summed up in one line: More CO2 in the atmosphere is a good thing because it’s good for one particular type of crop plant. That’s basically it. No discussion of the downsides, not even a pretense of a balanced perspective. Unfortunately it’s not hard to classify their piece as a denialist article because it conforms to some of the classic features of denial; it’s entirely one sided, it’s very short on detail, it does a poor job even with the little details that it does present and it simply ignores the massive amount of research done on the topic. In short it’s grossly misleading.
First of all Happer and Schmitt simply dismiss any connection that might exist between CO2 levels and rising temperatures, in the process consigning a fair amount of basic physics and chemistry to the dustbin. There are no references and no actual discussion of why they don’t believe there’s a connection. That’s a shoddy start to put it mildly; you would expect a legitimate skeptic to start with some actual evidence and references. Most of the article after that consists of a discussion of the differences between so-called C3 plants (like rice) and C4 plants (like corn and sugarcane). This is standard stuff found in college biochemistry textbooks, nothing revealing here. But Happer and Schmitt leverage a fundamental difference between the two – the fact that C4 plants can utilize CO2 more efficiently than C3 plants under certain conditions – into an argument for increasing CO2 levels in the atmosphere.
This of course completely ignores all the other potentially catastrophic effects that CO2 could have on agriculture, climate, biodiversity etc. You don’t even have to be a big believer in climate change to realize that focusing on only a single effect of a parameter on a complicated system is just bad science. Happer and Schmitt’s argument is akin to the argument that everyone should get themselves addicted to meth because one of meth’s effects is euphoria. So ramping up meth consumption will make everyone feel happier, right?
But even if you consider that extremely narrowly defined effect of CO2 on C3 and C4 plants, there’s still a problem. What’s interesting is that the argument has been countered by Matt Ridley in the pages of this very publication:
But it is not quite that simple. Surprisingly, the C4 strategy first became common in the repeated ice ages that began about four million years ago. This was because the ice ages were a very dry time in the tropics and carbon-dioxide levels were very low—about half today’s levels. C4 plants are better at scavenging carbon dioxide (the source of carbon for sugars) from the air and waste much less water doing so. In each glacial cold spell, forests gave way to seasonal grasslands on a huge scale. Only about 4% of plant species use C4, but nearly half of all grasses do, and grasses are among the newest kids on the ecological block.
So whereas rising temperatures benefit C4, rising carbon-dioxide levels do not. In fact, C3 plants get a greater boost from high carbon dioxide levels than C4. Nearly 500 separate experiments confirm that if carbon-dioxide levels roughly double from preindustrial levels, rice and wheat yields will be on average 36% and 33% higher, while corn yields will increase by only 24%.
So no, the situation is more subtle than the authors think. In fact I am surprised that, given that C4 plants actually do grow better at higher temperatures, Happer and Schmitt missed an opportunity for making the case for a warmer planet. In any case, there’s a big difference between improving yields of C4 plants under controlled greenhouse conditions and expecting these yields to improve without affecting other components of the ecosystem by doing a giant planetary experiment.
Read the entire article after the jump.
Image courtesy of Sierra Club.