Tag Archives: astrobiology

Searching for Signs of Life

Gliese 581 c

Surely there is intelligent life somewhere in the universe. Cosmologists estimate that the observable universe contains around 1,000,000,000,000,000,000,000,000 planets. And, they calculate that our Milky Way galaxy alone contains around 100 billion planets that are hospitable to life (as we currently know it).

These numbers boggle the mind and beg a question: how do we find evidence for life beyond our shores? The decades long search for extraterrestrial intelligence (SETI) pioneered the use of radio telescope observations to look for alien signals from deep space. But, the process has remained rather rudimentary and narrowly focused. The good news now is that astronomers and astrobiologists have a growing toolkit of techniques that allow for much more sophisticated detection and analysis of the broader signals of life — not just potential radio transmissions from an advanced alien culture.

From Quanta:

Huddled in a coffee shop one drizzly Seattle morning six years ago, the astrobiologist Shawn Domagal-Goldman stared blankly at his laptop screen, paralyzed. He had been running a simulation of an evolving planet, when suddenly oxygen started accumulating in the virtual planet’s atmosphere. Up the concentration ticked, from 0 to 5 to 10 percent.

“Is something wrong?” his wife asked.

“Yeah.”

The rise of oxygen was bad news for the search for extraterrestrial life.

After millennia of wondering whether we’re alone in the universe — one of “mankind’s most profound and probably earliest questions beyond, ‘What are you going to have for dinner?’” as the NASA astrobiologist Lynn Rothschild put it — the hunt for life on other planets is now ramping up in a serious way. Thousands of exoplanets, or planets orbiting stars other than the sun, have been discovered in the past decade. Among them are potential super-Earths, sub-Neptunes, hot Jupiters and worlds such as Kepler-452b, a possibly rocky, watery “Earth cousin” located 1,400 light-years from here. Starting in 2018 with the expected launch of NASA’s James Webb Space Telescope, astronomers will be able to peer across the light-years and scope out the atmospheres of the most promising exoplanets. They will look for the presence of “biosignature gases,” vapors that could only be produced by alien life.

They’ll do this by observing the thin ring of starlight around an exoplanet while it is positioned in front of its parent star. Gases in the exoplanet’s atmosphere will absorb certain frequencies of the starlight, leaving telltale dips in the spectrum.

As Domagal-Goldman, then a researcher at the University of Washington’s Virtual Planetary Laboratory (VPL), well knew, the gold standard in biosignature gases is oxygen. Not only is oxygen produced in abundance by Earth’s flora — and thus, possibly, other planets’ — but 50 years of conventional wisdom held that it could not be produced at detectable levels by geology or photochemistry alone, making it a forgery-proof signature of life. Oxygen filled the sky on Domagal-Goldman’s simulated world, however, not as a result of biological activity there, but because extreme solar radiation was stripping oxygen atoms off carbon dioxide molecules in the air faster than they could recombine. This biosignature could be forged after all.

The search for biosignature gases around faraway exoplanets “is an inherently messy problem,” said Victoria Meadows, an Australian powerhouse who heads VPL. In the years since Domagal-Goldman’s discovery, Meadows has charged her team of 75 with identifying the major “oxygen false positives” that can arise on exoplanets, as well as ways to distinguish these false alarms from true oxygenic signs of biological activity. Meadows still thinks oxygen is the best biosignature gas. But, she said, “if I’m going to look for this, I want to make sure that when I see it, I know what I’m seeing.”

Meanwhile, Sara Seager, a dogged hunter of “twin Earths” at the Massachusetts Institute of Technology who is widely credited with inventing the spectral technique for analyzing exoplanet atmospheres, is pushing research on biosignature gases in a different direction. Seager acknowledges that oxygen is promising, but she urges the astrobiology community to be less terra-centric in its view of how alien life might operate — to think beyond Earth’s geochemistry and the particular air we breathe. “My view is that we do not want to leave a single stone unturned; we need to consider everything,” she said.

As future telescopes widen the survey of Earth-like worlds, it’s only a matter of time before a potential biosignature gas is detected in a faraway sky. It will look like the discovery of all time: evidence that we are not alone. But how will we know for sure?

Read the entire article here.

Image: Artist’s Impression of Gliese 581 c, the first terrestrial extrasolar planet discovered within its star’s habitable zone. Courtesy: Hervé Piraud, Latitude0116, Xhienne. Creative Commons Attribution 2.5.

Active SETI

google-search-aliens

Seventy years after the SETI (Search for Extra-Terrestrial Intelligence) experiment began some astronomers are thinking of SETI 2.0 or active SETI. Rather than just passively listening for alien-made signals emanating from the far distant exoplanets these astronomers wish to take the work a bold step further. They’re planning to transmit messages in the hope that someone or something will be listening. And that has opponents of the plan rather worried. If somethings do hear us, will they come looking, and if so, then what? Will the process result in a real-life The Day the Earth Stood Still or Alien? And, more importantly, will they all look astonishingly Hollywood-like?

From BBC:

Scientists at a US conference have said it is time to try actively to contact intelligent life on other worlds.

Researchers involved in the search for extra-terrestrial life are considering what the message from Earth should be.

The call was made by the Search for Extra Terrestrial Intelligence institute at a meeting of the American Association for the Advancement of Science in San Jose.

But others argued that making our presence known might be dangerous.

Researchers at the Seti institute have been listening for signals from outer space for more than 30 years using radio telescope facilities in the US. So far there has been no sign of ET.

The organisation’s director, Dr Seth Shostak, told attendees to the AAAS meeting that it was now time to step up the search.

“Some of us at the institute are interested in ‘active Seti’, not just listening but broadcasting something to some nearby stars because maybe there is some chance that if you wake somebody up you’ll get a response,” he told BBC News.

The concerns are obvious, but sitting in his office at the institute in Mountain View, California, in the heart of Silicon Valley, he expresses them with characteristic, impish glee.

Game over?

“A lot of people are against active Seti because it is dangerous. It is like shouting in the jungle. You don’t know what is out there; you better not do it. If you incite the aliens to obliterate the planet, you wouldn’t want that on your tombstone, right?”

I couldn’t argue with that. But initially, I could scarcely believe I was having this conversation at a serious research institute rather than at a science fiction convention. The sci-fi feel of our talk was underlined by the toy figures of bug-eyed aliens that cheerfully decorate the office.

But Dr Shostak is a credible and popular figure and has been invited to present his arguments.

Leading astronomers, anthropologists and social scientists will gather at his institute after the AAAS meeting for a symposium to flesh out plans for a proposal for active Seti to put to the public and politicians.

High on the agenda is whether such a move would, as he put it so starkly, lead to the “obliteration” of the planet.

“I don’t see why the aliens would have any incentive to do that,” Dr Shostak tells me.

“Beyond that, we have been telling them willy-nilly that we are here for 70 years now. They are not very interesting messages but the early TV broadcasts, the early radio, the radar from the Second World War – all that has leaked off the Earth.

“Any society that could come here and ruin our whole day by incinerating the planet already knows we are here.”

Read the entire article here.

Image courtesy of Google Search.

The Habitable Exoplanets Catalog

The Habitable Exoplanets Catalog is a fascinating resource for those who dream of starting a new life on a distant world. Only into its first year, the catalog now lists 7 planets outside of our solar system and within our own Milky Way galaxy that could become a future home for adventurous humans — complaints from existing inhabitants notwithstanding. Although, the closest at the moment at a distance of just over 20 light years — Gliese 581g — would take around 200,000 years to reach using current technology.

[div class=attrib]From the Independent:[end-div]

An ambitious project to catalogue every habitable planet has discovered seven worlds inside the Milky Way that could possibly harbour life.

Marking its first anniversary, the Habitable Exoplanets Catalog said it had far exceeded its expectation of adding one or two new planets this year in its search for a new earth.

In recent years scientists from the Puerto Rico-based Planetary Habitability Laboratory that runs the catalogue have sharpened their techniques for finding new planets outside our solar system.

Chile’s High Accuracy Radial Veolocity Planet Searcher and the orbiting Kepler Space Telescope are two of the many tools that have increased the pace of discoveries.

The Planetary Habitability Laboratory launched the Habitable Exoplanets Catalog last year to measure the suitability for life of these emerging worlds and as a way to organise them for the public.

It has found nearly 80 confirmed exoplanets with a similar size to Earth but only a few of those have the right distance from their star to support liquid surface water – the presence of which is considered essential to sustain life.

Seven potentially habitable exoplanets are now listed by the Habitable Exoplanets Catalog, including the disputed Gliese 581g, plus some 27 more from NASA Kepler candidates waiting for confirmation.

Although all these exoplanets are superterrans are considered potentially habitable, scientists have not yet found a true Earth analogue.

[div class=attrib]Read the entire article following the jump.[end-div]

[div class=attrib]Image: Current Potential Habitable Exoplanets. Courtesy of CREDIT: PHL @ UPR Arecibo.[end-div]

So Where Is Everybody?

Astrobiologist Caleb Scharf brings us up to date on Fermi’s Paradox — which asks why, given that our galaxy is so old, haven’t other sentient intergalactic travelers found us. The answer may come from a video game.

[div class=attrib]From Scientific American:[end-div]

Right now, all across the planet, millions of people are engaged in a struggle with enormous implications for the very nature of life itself. Making sophisticated tactical decisions and wrestling with chilling and complex moral puzzles, they are quite literally deciding the fate of our existence.

Or at least they are pretending to.

The video game Mass Effect has now reached its third and final installment; a huge planet-destroying, species-wrecking, epic finale to a story that takes humanity from its tentative steps into interstellar space to a critical role in a galactic, and even intergalactic saga. It’s awfully good, even without all the fantastic visual design or gameplay, at the heart is a rip-roaring plot and countless backstories that tie the experience into one of the most carefully and completely imagined sci-fi universes out there.

As a scientist, and someone who will sheepishly admit to a love of videogames (from countless hours spent as a teenager coding my own rather inferior efforts, to an occasional consumer’s dip into the lushness of what a multi-billion dollar industry can produce), the Mass Effect series is fascinating for a number of reasons. The first of which is the relentless attention to plausible background detail. Take for example the task of finding mineral resources in Mass Effect 2. Flying your ship to different star systems presents you with a bird’s eye view of the planets, each of which has a fleshed out description – be it inhabited, or more often, uninhabitable. These have been torn from the annals of the real exoplanets, gussied up a little, but still recognizable. There are hot Jupiters, and icy Neptune-like worlds. There are gassy planets, rocky planets, and watery planets of great diversity in age, history and elemental composition. It’s a surprisingly good representation of what we now think is really out there.

But the biggest idea, the biggest piece of fiction-meets-genuine-scientific-hypothesis is the overarching story of Mass Effect. It directly addresses one of the great questions of astrobiology – is there intelligent life elsewhere in our galaxy, and if so, why haven’t we intersected with it yet? The first serious thinking about this problem seems to have arisen during a lunchtime chat in the 1940?s where the famous physicist Enrico Fermi (for whom the fundamental particle type ‘fermion’ is named) is supposed to have asked “Where is Everybody?” The essence of the Fermi Paradox is that since our galaxy is very old, perhaps 10 billion years old, unless intelligent life is almost impossibly rare it will have arisen ages before we came along. Such life will have had time to essentially span the Milky Way, even if spreading out at relatively slow sub-light speeds, it – or its artificial surrogates, machines – will have reached every nook and cranny. Thus we should have noticed it, or been noticed by it, unless we are truly the only example of intelligent life.

The Fermi Paradox comes with a ton of caveats and variants. It’s not hard to think of all manner of reasons why intelligent life might be teeming out there, but still not have met us – from self-destructive behavior to the realistic hurdles of interstellar travel. But to my mind Mass Effect has what is perhaps one of the most interesting, if not entertaining, solutions. This will spoil the story; you have been warned.

Without going into all the colorful details, the central premise is that a hugely advanced and ancient race of artificially intelligent machines ‘harvests’ all sentient, space-faring life in the Milky Way every 50,000 years. These machines otherwise lie dormant out in the depths of intergalactic space. They have constructed and positioned an ingenious web of technological devices (including the Mass Effect relays, providing rapid interstellar travel) and habitats within the Galaxy that effectively sieve through the rising civilizations, helping the successful flourish and multiply, ripening them up for eventual culling. The reason for this? Well, the plot is complex and somewhat ambiguous, but one thing that these machines do is use the genetic slurry of millions, billions of individuals from a species to create new versions of themselves.

It’s a grand ol’ piece of sci-fi opera, but it also provides a neat solution to the Fermi Paradox via a number of ideas: a) The most truly advanced interstellar species spends most of its time out of the Galaxy in hibernation. b) Purging all other sentient (space-faring) life every 50,000 years puts a stop to any great spreading across the Galaxy. c) Sentient, space-faring species are inevitably drawn into the technological lures and habitats left for them, and so are less inclined to explore.

These make it very unlikely that until a species is capable of at least proper interplanetary space travel (in the game humans have to reach Mars to become aware of what’s going on at all) it will have to conclude that the Galaxy is a lonely place.

[div class=attrib]Read more after the jump.[end-div]

[div class=attrib]Image: Intragalactic life. Courtesy of J. Schombert, U. Oregon.[end-div]