Tag Archives: string theory

The Religion of String Theory

Hyperboloid-of-one-sheetRead anything about string theory and you’ll soon learn that it resembles more of a religion than a scientific principle. String theory researchers and their supporters will be the first to tell you that this elegant, but extremely complex, integration of gravity and quantum field theory,  cannot be confirmed through experiment. And, neither, can it be dispelled through experiment.

So, while the promise of string theory — to bring us one unified understanding of the entire universe — is deliciously tantalizing, it nonetheless forces us to take a giant leap of faith. I suppose that would put string theory originators, physicists Michael Green and John Schwarz, somewhere in the same pantheon as Moses and Joseph Smith.

From Quanta:

Thirty years have passed since a pair of physicists, working together on a stormy summer night in Aspen, Colo., realized that string theory might have what it takes to be the “theory of everything.”

“We must be getting pretty close,” Michael Green recalls telling John Schwarz as the thunder raged and they hammered away at a proof of the theory’s internal consistency, “because the gods are trying to prevent us from completing this calculation.”

Their mathematics that night suggested that all phenomena in nature, including the seemingly irreconcilable forces of gravity and quantum mechanics, could arise from the harmonics of tiny, vibrating loops of energy, or “strings.” The work touched off a string theory revolution and spawned a generation of specialists who believed they were banging down the door of the ultimate theory of nature. But today, there’s still no answer. Because the strings that are said to quiver at the core of elementary particles are too small to detect — probably ever — the theory cannot be experimentally confirmed. Nor can it be disproven: Almost any observed feature of the universe jibes with the strings’ endless repertoire of tunes.

The publication of Green and Schwarz’s paper “was 30 years ago this month,” the string theorist and popular-science author Brian Greene wrote in Smithsonian Magazine in January, “making the moment ripe for taking stock: Is string theory revealing reality’s deep laws? Or, as some detractors have claimed, is it a mathematical mirage that has sidetracked a generation of physicists?” Greene had no answer, expressing doubt that string theory will “confront data” in his lifetime.

Recently, however, some string theorists have started developing a new tactic that gives them hope of someday answering these questions. Lacking traditional tests, they are seeking validation of string theory by a different route. Using a strange mathematical dictionary that translates between laws of gravity and those of quantum mechanics, the researchers have identified properties called “consistency conditions” that they say any theory combining quantum mechanics and gravity must meet. And in certain highly simplified imaginary worlds, they claim to have found evidence that the only consistent theories of “quantum gravity” involve strings.

According to many researchers, the work provides weak but concrete support for the decades-old suspicion that string theory may be the only mathematically consistent theory of quantum gravity capable of reproducing gravity’s known form on the scale of galaxies, stars and planets, as captured by Albert Einstein’s theory of general relativity. And if string theory is the only possible approach, then its proponents say it must be true — with or without physical evidence. String theory, by this account, is “the only game in town.”

“Proving that a big class of stringlike models are the only things consistent with general relativity and quantum mechanics would be a way, to some extent, of confirming it,” said Tom Hartman, a theoretical physicist at Cornell University who has been following the recent work.

If they are successful, the researchers acknowledge that such a proof will be seen as controversial evidence that string theory is correct. “‘Correct’ is a loaded word,” said Mukund Rangamani, a professor at Durham University in the United Kingdom and the co-author of a paper posted recently to the physics preprint site arXiv.org that finds evidence of “string universality” in a class of imaginary universes.

So far, the theorists have shown that string theory is the only “game” meeting certain conditions in “towns” wildly different from our universe, but they are optimistic that their techniques will generalize to somewhat more realistic physical worlds. “We will continue to accumulate evidence for the ‘string universality’ conjecture in different settings and for different classes of theories,” said Alex Maloney, a professor of physics at McGill University in Montreal and co-author of another recent paper touting evidence for the conjecture, “and eventually a larger picture will become clear.”

Meanwhile, outside experts caution against jumping to conclusions based on the findings to date. “It’s clear that these papers are an interesting attempt,” said Matt Strassler, a visiting professor at Harvard University who has worked on string theory and particle physics. “But these aren’t really proofs; these are arguments. They are calculations, but there are weasel words in certain places.”

Proponents of string theory’s rival, an underdog approach called “loop quantum gravity,” believe that the work has little to teach us about the real world. “They should try to solve the problems of their theory, which are many,” said Carlo Rovelli, a loop quantum gravity researcher at the Center for Theoretical Physics in Marseille, France, “instead of trying to score points by preaching around that they are ‘the only game in town.’”

Mystery Theory

Over the past century, physicists have traced three of the four forces of nature — strong, weak and electromagnetic — to their origins in the form of elementary particles. Only gravity remains at large. Albert Einstein, in his theory of general relativity, cast gravity as smooth curves in space and time: An apple falls toward the Earth because the space-time fabric warps under the planet’s weight. This picture perfectly captures gravity on macroscopic scales.

But in small enough increments, space and time lose meaning, and the laws of quantum mechanics — in which particles have no definite properties like “location,” only probabilities — take over. Physicists use a mathematical framework called quantum field theory to describe the probabilistic interactions between particles. A quantum theory of gravity would describe gravity’s origin in particles called “gravitons” and reveal how their behavior scales up to produce the space-time curves of general relativity. But unifying the laws of nature in this way has proven immensely difficult.

String theory first arose in the 1960s as a possible explanation for why elementary particles called quarks never exist in isolation but instead bind together to form protons, neutrons and other composite “hadrons.” The theory held that quarks are unable to pull apart because they form the ends of strings rather than being free-floating points. But the argument had a flaw: While some hadrons do consist of pairs of quarks and anti-quarks and plausibly resemble strings, protons and neutrons contain three quarks apiece, invoking the ugly and uncertain picture of a string with three ends. Soon, a different theory of quarks emerged. But ideas die hard, and some researchers, including Green, then at the University of London, and Schwarz, at the California Institute of Technology, continued to develop string theory.

Problems quickly stacked up. For the strings’ vibrations to make physical sense, the theory calls for many more spatial dimensions than the length, width and depth of everyday experience, forcing string theorists to postulate that six extra dimensions must be knotted up at every point in the fabric of reality, like the pile of a carpet. And because each of the innumerable ways of knotting up the extra dimensions corresponds to a different macroscopic pattern, almost any discovery made about our universe can seem compatible with string theory, crippling its predictive power. Moreover, as things stood in 1984, all known versions of string theory included a nonsensical mathematical term known as an “anomaly.”

On the plus side, researchers realized that a certain vibration mode of the string fit the profile of a graviton, the coveted quantum purveyor of gravity. And on that stormy night in Aspen in 1984, Green and Schwarz discovered that the graviton contributed a term to the equations that, for a particular version of string theory, exactly canceled out the problematic anomaly. The finding raised the possibility that this version was the one, true, mathematically consistent theory of quantum gravity, and it helped usher in a surge of activity known as the “first superstring revolution.”

 But only a year passed before another version of string theory was also certified anomaly-free. In all, five consistent string theories were discovered by the end of the decade. Some conceived of particles as closed strings, others described them as open strings with dangling ends, and still others generalized the concept of a string to higher-dimensional objects known as “D-branes,” which resemble quivering membranes in any number of dimensions. Five string theories seemed an embarrassment of riches.

Read the entire story here.

Image: Image of (1 + 1)-dimensional anti-de Sitter space embedded in flat (1 + 2)-dimensional space. The embedded surface contains closed timelike curves circling the x1 axis. Courtesy of Wikipedia.

Spacetime as an Emergent Phenomenon

A small, but growing, idea in theoretical physics and cosmology is that spacetime may be emergent. That is, spacetime emerges from something much more fundamental, in much the same way that our perception of temperature emerges from the motion and characteristics of underlying particles.

[div class=attrib]More on this new front in our quest to answer the most basic of questions from FQXi:[end-div]

Imagine if nothing around you was real. And, no, not in a science-fiction Matrix sense, but in an actual science-fact way.

Technically, our perceived reality is a gigantic series of approximations: The tables, chairs, people, and cell phones that we interact with every day are actually made up of tiny particles—as all good schoolchildren learn. From the motion and characteristics of those particles emerge the properties that we see and feel, including color and temperature. Though we don’t see those particles, because they are so much smaller than the phenomena our bodies are built to sense, they govern our day-to-day existence.

Now, what if spacetime is emergent too? That’s the question that Joanna Karczmarek, a string theorist at the University of British Columbia, Vancouver, is attempting to answer. As a string theorist, Karczmarek is familiar with imagining invisible constituents of reality. String theorists posit that at a fundamental level, matter is made up of unthinkably tiny vibrating threads of energy that underlie subatomic particles, such as quarks and electrons. Most string theorists, however, assume that such strings dance across a pre-existing and fundamental stage set by spacetime. Karczmarek is pushing things a step further, by suggesting that spacetime itself is not fundamental, but made of more basic constituents.

Having carried out early research in atomic, molecular and optical physics, Karczmarek shifted into string theory because she “was more excited by areas where less was known”—and looking for the building blocks from which spacetime arises certainly fits that criteria. The project, funded by a $40,000 FQXi grant, is “high risk but high payoff,” Karczmarek says.

Although one of only a few string theorists to address the issue, Karczmarek is part of a growing movement in the wider physics community to create a theory that shows spacetime is emergent. (See, for instance, “Breaking the Universe’s Speed Limit.”) The problem really comes into focus for those attempting to combine quantum mechanics with Einstein’s theory of general relativity and thus is traditionally tackled directly by quantum gravity researchers, rather than by string theorists, Karczmarek notes.

That may change though. Nathan Seiberg, a string theorist at the Institute for Advanced Study (IAS) in Princeton, New Jersey, has found good reasons for his stringy colleagues to believe that at least space—if not spacetime—is emergent. “With space we can sort of imagine how it might work,” Sieberg says. To explain how, Seiberg uses an everyday example—the emergence of an apparently smooth surface of water in a bowl. “If you examine the water at the level of particles, there is no smooth surface. It looks like there is, but this is an approximation,” Seiberg says. Similarly, he has found examples in string theory where some spatial dimensions emerge when you take a step back from the picture (arXiv:hep-th/0601234v1). “At shorter distances it doesn’t look like these dimensions are there because they are quantum fluctuations that are very rapid,” Seiberg explains. “In fact, the notion of space ceases to make sense, and eventually if you go to shorter and shorter distances you don’t even need it for the formulation of the theory.”

[div class=attrib]Read the entire article after the jump.[end-div]

[div class=attrib]Image courtesy of Nature.[end-div]

From Nine Dimensions to Three

Over the last 40 years or so physicists and cosmologists have sought to construct a single grand theory that describes our entire universe from the subatomic soup that makes up particles and describes all forces to the vast constructs of our galaxies, and all in between and beyond. Yet a major stumbling block has been how to bring together the quantum theories that have so successfully described, and predicted, the microscopic with our current understanding of gravity. String theory is one such attempt to develop a unified theory of everything, but it remains jumbled with many possible solutions and, currently, is beyond experimental verification.

Recently however, theorists in Japan announced a computer simulation which shows how our current 3-dimensional universe may have evolved from a 9-dimensional space hypothesized by string theory.

[div class=attrib]From Interactions:[end-div]

A group of three researchers from KEK, Shizuoka University and Osaka University has for the first time revealed the way our universe was born with 3 spatial dimensions from 10-dimensional superstring theory1 in which spacetime has 9 spatial directions and 1 temporal direction. This result was obtained by numerical simulation on a supercomputer.

[Abstract]

According to Big Bang cosmology, the universe originated in an explosion from an invisibly tiny point. This theory is strongly supported by observation of the cosmic microwave background2 and the relative abundance of elements. However, a situation in which the whole universe is a tiny point exceeds the reach of Einstein’s general theory of relativity, and for that reason it has not been possible to clarify how the universe actually originated.

In superstring theory, which is considered to be the “theory of everything”, all the elementary particles are represented as various oscillation modes of very tiny strings. Among those oscillation modes, there is one that corresponds to a particle that mediates gravity, and thus the general theory of relativity can be naturally extended to the scale of elementary particles. Therefore, it is expected that superstring theory allows the investigation of the birth of the universe. However, actual calculation has been intractable because the interaction between strings is strong, so all investigation thus far has been restricted to discussing various models or scenarios.

Superstring theory predicts a space with 9 dimensions3, which poses the big puzzle of how this can be consistent with the 3-dimensional space that we live in.

A group of 3 researchers, Jun Nishimura (associate professor at KEK), Asato Tsuchiya (associate professor at Shizuoka University) and Sang-Woo Kim (project researcher at Osaka University) has succeeded in simulating the birth of the universe, using a supercomputer for calculations based on superstring theory. This showed that the universe had 9 spatial dimensions at the beginning, but only 3 of these underwent expansion at some point in time.

This work will be published soon in Physical Review Letters.

[The content of the research]

In this study, the team established a method for calculating large matrices (in the IKKT matrix model4), which represent the interactions of strings, and calculated how the 9-dimensional space changes with time. In the figure, the spatial extents in 9 directions are plotted against time.

If one goes far enough back in time, space is indeed extended in 9 directions, but then at some point only 3 of those directions start to expand rapidly. This result demonstrates, for the first time, that the 3-dimensional space that we are living in indeed emerges from the 9-dimensional space that superstring theory predicts.

This calculation was carried out on the supercomputer Hitachi SR16000 (theoretical performance: 90.3 TFLOPS) at the Yukawa Institute for Theoretical Physics of Kyoto University.

[The significance of the research]

It is almost 40 years since superstring theory was proposed as the theory of everything, extending the general theory of relativity to the scale of elementary particles. However, its validity and its usefulness remained unclear due to the difficulty of performing actual calculations. The newly obtained solution to the space-time dimensionality puzzle strongly supports the validity of the theory.

Furthermore, the establishment of a new method to analyze superstring theory using computers opens up the possibility of applying this theory to various problems. For instance, it should now be possible to provide a theoretical understanding of the inflation5 that is believed to have taken place in the early universe, and also the accelerating expansion of the universe6, whose discovery earned the Nobel Prize in Physics this year. It is expected that superstring theory will develop further and play an important role in solving such puzzles in particle physics as the existence of the dark matter that is suggested by cosmological observations, and the Higgs particle, which is expected to be discovered by LHC experiments.

[div class=attrib]Read the entire article here.[end-div]

[div class=attrib]Image: A visualization of strings. Courtesy of R. Dijkgraaf / Universe Today.[end-div]

Cosmic Smoothness

Simulations based on the standard cosmological model, as shown here, indicate that on very large distance scales, galaxies should be uniformly distributed. But observations show a clumpier distribution than expected. (The length bar represents about $2.3$ billion light years.)[div class=attrib]From American Physical Society, Michael J. Hudson:[end-div]

The universe is expected to be very nearly homogeneous in density on large scales. In Physical Review Letters, Shaun Thomas and colleagues from University College London analyze measurements of the density of galaxies on the largest spatial scales so far—billions of light years—and find that the universe is less smooth than expected. If it holds up, this result will have important implications for our understanding of dark matter, dark energy, and perhaps gravity itself.

In the current standard cosmological model, the average mass-energy density of the observable universe consists of 5% normal matter (most of which is hydrogen and helium), 23% dark matter, and 72% dark energy. The dark energy is assumed to be uniform, but the normal and dark matter are not. The balance between matter and dark energy determines both how the universe expands and how regions of unusually high or low matter density evolve with time.

The same cosmological model predicts the statistics of the nonuniform structure and their dependence on spatial scale. On scales that are small by cosmological standards, fluctuations in the matter density are comparable to its mean, in agreement with what is seen: matter is clumped into galaxies, clusters of galaxies, and filaments of the “cosmic web.” On larger scales, however, the contrast of the structures compared to the mean density decreases. On the largest cosmological scales, these density fluctuations are small in amplitude compared to the average density of the universe and so are well described by linear perturbation theory (see simulation results in Fig. 1). Moreover, these perturbations can be calibrated at early times directly from the cosmic microwave background (CMB), a snapshot of the universe from when it was only 380,000 years old. Despite the fact that only 5% of the Universe is well understood, this model is an excellent fit to data spanning a wide range of spatial scales as the fluctuations evolved from the time of the CMB to the present age of the universe, some 13.8 billion years. On the largest scales, dark energy drives accelerated expansion of the universe. Because this aspect of the standard model is least understood, it is important to test it on these scales.

Thomas et al. use publicly-released catalogs from the Sloan Digital Sky Survey to select more than 700,000 galaxies whose observed colors indicate a significant redshift and are therefore presumed to be at large cosmological distances. They use the redshift of the galaxies, combined with their observed positions on the sky, to create a rough three-dimensional map of the galaxies in space and to assess the homogeneity on scales of a couple of billion light years. One complication is that Thomas et al. measure the density of galaxies, not the density of all matter, but we expect that fluctuations of these two densities about their means to be proportional; the constant of proportionality can be calibrated by observations on smaller scales. Indeed, on small scales the galaxy data are in good agreement with the standard model. On the largest scales, the fluctuations in galaxy density are expected to be of order a percent of the mean density, but Thomas et al. find fluctuations double this prediction. This result then suggests that the universe is less homogeneous than expected.

This result is not entirely new: previous studies based on subsets of the data studied by Thomas et al. showed the same effect, albeit with a lower statistical significance. In addition, there are other ways of probing the large-scale mass distribution. For example, inhomogeneities in the mass distribution lead to inhomogeneities in the local rate of expansion. Some studies have suggested that, on very large scales, this expansion too is less homogeneous than the model predictions.

Future large-scale surveys will produce an avalanche of data. These surveys will allow the methods employed by Thomas et al. and others to be extended to still larger scales. Of course, the challenge for these future surveys will be to correct for the systematic effects to even greater accuracy.

[div class=attrib]More from theSource here.[end-div]

The Great Cosmic Roller-Coaster Ride

[div class=attrib]From Scientific American:[end-div]

Could cosmic inflation be a sign that our universe is embedded in a far vaster realm

You might not think that cosmologists could feel claustrophobic in a universe that is 46 billion light-years in radius and filled with sextillions of stars. But one of the emerging themes of 21st-century cosmology is that the known universe, the sum of all we can see, may just be a tiny region in the full extent of space. Various types of parallel universes that make up a grand “multiverse” often arise as side effects of cosmological theories. We have little hope of ever directly observing those other universes, though, because they are either too far away or somehow detached from our own universe.

Some parallel universes, however, could be separate from but still able to interact with ours, in which case we could detect their direct effects. The possibility of these worlds came to cosmologists’ attention by way of string theory, the leading candidate for the foundational laws of nature. Although the eponymous strings of string theory are extremely small, the principles governing their properties also predict new kinds of larger membranelike objects—“branes,” for short. In particular, our universe may be a three-dimensional brane in its own right, living inside a nine-dimensional space. The reshaping of higher-dimensional space and collisions between different universes may have led to some of the features that astronomers observe today.

[div class=attrib]More from theSource here.[end-div]