[div class=attrib]From Project Syndicate:[end-div]
It was recently discovered that the universe’s expansion is accelerating, not slowing, as was previously thought. Light from distant exploding stars revealed that an unknown force (dubbed “dark energy”) more than outweighs gravity on cosmological scales.
Unexpected by researchers, such a force had nevertheless been predicted in 1915 by a modification that Albert Einstein proposed to his own theory of gravity, the general theory of relativity. But he later dropped the modification, known as the “cosmological term,” calling it the “biggest blunder” of his life.
So the headlines proclaim: “Einstein was right after all,” as though scientists should be compared as one would clairvoyants: Who is distinguished from the common herd by knowing the unknowable – such as the outcome of experiments that have yet to be conceived, let alone conducted? Who, with hindsight, has prophesied correctly?
But science is not a competition between scientists; it is a contest of ideas – namely, explanations of what is out there in reality, how it behaves, and why. These explanations are initially tested not by experiment but by criteria of reason, logic, applicability, and uniqueness at solving the mysteries of nature that they address. Predictions are used to test only the tiny minority of explanations that survive these criteria.
The story of why Einstein proposed the cosmological term, why he dropped it, and why cosmologists today have reintroduced it illustrates this process. Einstein sought to avoid the implication of unmodified general relativity that the universe cannot be static – that it can expand (slowing down, against its own gravity), collapse, or be instantaneously at rest, but that it cannot hang unsupported.
This particular prediction cannot be tested (no observation could establish that the universe is at rest, even if it were), but it is impossible to change the equations of general relativity arbitrarily. They are tightly constrained by the explanatory substance of Einstein’s theory, which holds that gravity is due to the curvature of spacetime, that light has the same speed for all observers, and so on.
But Einstein realized that it is possible to add one particular term – the cosmological term – and adjust its magnitude to predict a static universe, without spoiling any other explanation. All other predictions based on the previous theory of gravity – that of Isaac Newton – that were testable at the time were good approximations to those of unmodified general relativity, with that single exception: Newton’s space was an unmoving background against which objects move. There was no evidence yet, contradicting Newton’s view – no mystery of expansion to explain. Moreover, anything beyond that traditional conception of space required a considerable conceptual leap, while the cosmological term made no measurable difference to other predictions. So Einstein added it.
[div class=attrib]More from theSource here.[end-div]
[div class=attrib]Image courtesy of Wikipedia / Creative Commons.[end-div]