Tag Archives: radiation

Pain Ray

We humans are capable of the most sublime creations, from soaring literary inventions to intensely moving music and gorgeous works of visual art. This stands in stark and paradoxical contrast to our range of inventions that enable efficient mass destruction, torture and death. The latest in this sad catalog of human tools of terror is the “pain ray”, otherwise known by its military euphemism as an Active Denial weapon. The good news is that it only delivers intense pain, rather than death. How inventive we humans really are — we should be so proud.

[tube]J1w4g2vr7B4[/tube]

From the New Scientist:

THE pain, when it comes, is unbearable. At first it’s comparable to a hairdryer blast on the skin. But within a couple of seconds, most of the body surface feels roasted to an excruciating degree. Nobody has ever resisted it: the deep-rooted instinct to writhe and escape is too strong.

The source of this pain is an entirely new type of weapon, originally developed in secret by the US military – and now ready for use. It is a genuine pain ray, designed to subdue people in war zones, prisons and riots. Its name is Active Denial. In the last decade, no other non-lethal weapon has had as much research and testing, and some $120 million has already been spent on development in the US.

Many want to shelve this pain ray before it is fired for real but the argument is far from cut and dried. Active Denial’s supporters claim that its introduction will save lives: the chances of serious injury are tiny, they claim, and it causes less harm than tasers, rubber bullets or batons. It is a persuasive argument. Until, that is, you bring the dark side of human nature into the equation.

The idea for Active Denial can be traced back to research on the effects of radar on biological tissue. Since the 1940s, researchers have known that the microwave radiation produced by radar devices at certain frequencies could heat the skin of bystanders. But attempts to use such microwave energy as a non-lethal weapon only began in the late 1980s, in secret, at the Air Force Research Laboratory (AFRL) at Kirtland Air Force Base in Albuquerque, New Mexico.

The first question facing the AFRL researchers was whether microwaves could trigger pain without causing skin damage. Radiation equivalent to that used in oven microwaves, for example, was out of the question since it penetrates deep into objects, and causes cells to break down within seconds.

The AFRL team found that the key was to use millimetre waves, very-short-wavelength microwaves, with a frequency of about 95 gigahertz. By conducting tests on human volunteers, they discovered that these waves would penetrate only the outer 0.4 millimetres of skin, because they are absorbed by water in surface tissue. So long as the beam power was capped – keeping the energy per square centimetre of skin below a certain level – the tissue temperature would not exceed 55 °C, which is just below the threshold for damaging cells (Bioelectromagnetics, vol 18, p 403).

The sensation, however, was extremely painful, because the outer skin holds a type of pain receptor called thermal nociceptors. These respond rapidly to threats and trigger reflexive “repel” reactions when stimulated (see diagram).

To build a weapon, the next step was to produce a high-power beam capable of reaching hundreds of metres. At the time, it was possible to beam longer-wavelength microwaves over great distances – as with radar systems – but it was not feasible to use the same underlying technology to produce millimetre waves.

Working with the AFRL, the military contractor Raytheon Company, based in Waltham, Massachusetts, built a prototype with a key bit of hardware: a gyrotron, a device for amplifying millimetre microwaves. Gyrotrons generate a rotating ring of electrons, held in a magnetic field by powerful cryogenically cooled superconducting magnets. The frequency at which these electrons rotate matches the frequency of millimetre microwaves, causing a resonating effect. The souped-up millimetre waves then pass to an antenna, which fires the beam.

The first working prototype of the Active Denial weapon, dubbed “System 0”, was completed in 2000. At 7.5 tonnes, it was too big to be easily transported. A few years later, it was followed by mobile versions that could be carried on heavy vehicles.

Today’s Active Denial device, designed for military use, looks similar to a large, flat satellite dish mounted on a truck. The microwave beam it produces has a diameter of about 2 metres and can reach targets several hundred metres away. It fires in bursts of about 3 to 5 seconds.

Those who have been at the wrong end of the beam report that the pain is impossible to resist. “You might think you can withstand getting blasted. Your body disagrees quite strongly,” says Spencer Ackerman, a reporter for Wired magazine’s blog, Danger Room. He stood in the beam at an event arranged for the media last year. “One second my shoulder and upper chest were at a crisp, early-spring outdoor temperature on a Virginia field. Literally the next second, they felt like they were roasted, with what can be likened to a super-hot tingling feeling. The sensation causes your nerves to take control of your feeble consciousness, so it wasn’t like I thought getting out of the way of the beam was a good idea – I did what my body told me to do.” There’s also little chance of shielding yourself; the waves penetrate clothing.

Read the entire article here.

Related video courtesy of CBS 60 Minutes.

Dark Lightning

It’s fascinating how a seemingly well-understood phenomenon, such as lightning, can still yield enormous surprises. Researchers have found that visible flashes of lightning can also be accompanied by non-visible, and more harmful, radiation such as x- and gamma-rays.

From the Washington Post:

A lightning bolt is one of nature’s most over-the-top phenomena, rarely failing to elicit at least a ping of awe no matter how many times a person has witnessed one. With his iconic kite-and-key experiments in the mid-18th century, Benjamin Franklin showed that lightning is an electrical phenomenon, and since then the general view has been that lightning bolts are big honking sparks no different in kind from the little ones generated by walking in socks across a carpeted room.

But scientists recently discovered something mind-bending about lightning: Sometimes its flashes are invisible, just sudden pulses of unexpectedly powerful radiation. It’s what Joseph Dwyer, a lightning researcher at the Florida Institute of Technology, has termed dark lightning.

Unknown to Franklin but now clear to a growing roster of lightning researchers and astronomers is that along with bright thunderbolts, thunderstorms unleash sprays of X-rays and even intense bursts of gamma rays, a form of radiation normally associated with such cosmic spectacles as collapsing stars. The radiation in these invisible blasts can carry a million times as much energy as the radiation in visible lightning, but that energy dissipates quickly in all directions rather than remaining in a stiletto-like lightning bolt.

Dark lightning appears sometimes to compete with normal lightning as a way for thunderstorms to vent the electrical energy that gets pent up inside their roiling interiors, Dwyer says. Unlike with regular lightning, though, people struck by dark lightning, most likely while flying in an airplane, would not get hurt. But according to Dwyer’s calculations, they might receive in an instant the maximum safe lifetime dose of ionizing radiation — the kind that wreaks the most havoc on the human body.

The only way to determine whether an airplane had been struck by dark lightning, Dwyer says, “would be to use a radiation detector. Right in the middle of [a flash], a very brief bluish-purple glow around the plane might be perceptible. Inside an aircraft, a passenger would probably not be able to feel or hear much of anything, but the radiation dose could be significant.”

However, because there’s only about one dark lightning occurrence for every thousand visible flashes and because pilots take great pains to avoid thunderstorms, Dwyer says, the risk of injury is quite limited. No one knows for sure if anyone has ever been hit by dark lightning.

About 25 million visible thunderbolts hit the United States every year, killing about 30 people and many farm animals, says John Jensenius, a lightning safety specialist with the National Weather Service in Gray, Maine. Worldwide, thunderstorms produce about a billion or so lightning bolts annually.

Read the entire article after the jump.

Image: Lightning in Foshan, China. Courtesy of Telegraph.