Tag Archives: Darwin

DarwinTunes

Charles_DarwinResearchers at Imperial College, London recently posed an intriguing question and have since developed a cool experiment to test it. Does artistic endeavor, such as music, follow the same principles of evolutionary selection in biology, as described by Darwin? That is, does the funkiest survive? Though, one has to wonder what the eminent scientist would have thought about some recent fusion of rap / dubstep / classical.

From the Guardian:

There were some funky beats at Imperial College London on Saturday at its annual science festival. As well as opportunities to create bogeys, see robots dance and try to get physics PhD students to explain their wacky world, this fascinating event included the chance to participate in a public game-like experiment called DarwinTunes.

Participants select tunes and “mate” them with other tunes to create musical offspring: if the offspring are in turn selected by other players, they “survive” and get the chance to reproduce their musical DNA. The experiment is online – you too can try to immortalise your selfish musical genes.

It is a model of evolution in practice that raises fascinating questions about culture and nature. These questions apply to all the arts, not just to dance beats. How does “cultural evolution” work? How close is the analogy between Darwin’s well-proven theory of evolution in nature and the evolution of art, literature and music?

The idea of cultural evolution was boldly defined by Jacob Bronowski as our fundamental human ability “not to accept the environment but to change it”. The moment the first stone tools appeared in Africa, about 2.5m years ago, a new, faster evolution, that of human culture, became visible on Earth: from cave paintings to the Renaissance, from Galileo to the 3D printer, this cultural evolution has advanced at breathtaking speed compared with the massive periods of time it takes nature to evolve new forms.

In DarwinTunes, cultural evolution is modelled as what the experimenters call “the survival of the funkiest”. Pulsing dance beats evolve through selections made by participants, and the music (it is claimed) becomes richer through this process of selection. Yet how does the model really correspond to the story of culture?

One way Darwin’s laws of nature apply to visual art is in the need for every successful form to adapt to its environment. In the forests of west and central Africa, wood carving was until recent times a flourishing art form. In the islands of Greece, where marble could be quarried easily, stone sculpture was more popular. In the modern technological world, the things that easily come to hand are not wood or stone but manufactured products and media images – so artists are inclined to work with the readymade.

At first sight, the thesis of DarwinTunes is a bit crude. Surely it is obvious that artists don’t just obey the selections made by their audience – that is, their consumers. To think they do is to apply the economic laws of our own consumer society across all history. Culture is a lot funkier than that.

Yet just because the laws of evolution need some adjustment to encompass art, that does not mean art is a mysterious spiritual realm impervious to scientific study. In fact, the evolution of evolution – the adjustments made by researchers to Darwin’s theory since it was unveiled in the Victorian age – offers interesting ways to understand culture.

One useful analogy between art and nature is the idea of punctuated equilibrium, introduced by some evolutionary scientists in the 1970s. Just as species may evolve not through a constant smooth process but by spectacular occasional leaps, so the history of art is punctuated by massively innovative eras followed by slower, more conventional periods.

Read the entire story here.

Image: Charles Darwin, 1868, photographed by Julia Margaret Cameron. Courtesy of Wikipedia.

The Death of Scientific Genius

There is a certain school of thought that asserts that scientific genius is a thing of the past. After all, we haven’t seen the recent emergence of pivotal talents such as Galileo, Newton, Darwin or Einstein. Is it possible that fundamentally new ways to look at our world — that a new mathematics or a new physics is no longer possible?

In a recent essay in Nature, Dean Keith Simonton, professor of psychology at UC Davis, argues that such fundamental and singular originality is a thing of the past.

[div class=attrib]From ars technica:[end-div]

Einstein, Darwin, Galileo, Mendeleev: the names of the great scientific minds throughout history inspire awe in those of us who love science. However, according to Dean Keith Simonton, a psychology professor at UC Davis, the era of the scientific genius may be over. In a comment paper published in Nature last week, he explains why.

The “scientific genius” Simonton refers to is a particular type of scientist; their contributions “are not just extensions of already-established, domain-specific expertise.” Instead, “the scientific genius conceives of a novel expertise.” Simonton uses words like “groundbreaking” and “overthrow” to illustrate the work of these individuals, explaining that they each contributed to science in one of two major ways: either by founding an entirely new field or by revolutionizing an already-existing discipline.

Today, according to Simonton, there just isn’t room to create new disciplines or overthrow the old ones. “It is difficult to imagine that scientists have overlooked some phenomenon worthy of its own discipline,” he writes. Furthermore, most scientific fields aren’t in the type of crisis that would enable paradigm shifts, according to Thomas Kuhn’s classic view of scientific revolutions. Simonton argues that instead of finding big new ideas, scientists currently work on the details in increasingly specialized and precise ways.

And to some extent, this argument is demonstrably correct. Science is becoming more and more specialized. The largest scientific fields are currently being split into smaller sub-disciplines: microbiology, astrophysics, neuroscience, and paleogeography, to name a few. Furthermore, researchers have more tools and the knowledge to hone in on increasingly precise issues and questions than they did a century—or even a decade—ago.

But other aspects of Simonton’s argument are a matter of opinion. To me, separating scientists who “build on what’s already known” from those who “alter the foundations of knowledge” is a false dichotomy. Not only is it possible to do both, but it’s impossible to establish—or even make a novel contribution to—a scientific field without piggybacking on the work of others to some extent. After all, it’s really hard to solve the problems that require new solutions if other people haven’t done the work to identify them. Plate tectonics, for example, was built on observations that were already widely known.

And scientists aren’t done altering the foundations of knowledge, either. In science, as in many other walks of life, we don’t yet know everything we don’t know. Twenty years ago, exoplanets were hypothetical. Dark energy, as far as we knew, didn’t exist.

Simonton points out that “cutting-edge work these days tends to emerge from large, well-funded collaborative teams involving many contributors” rather than a single great mind. This is almost certainly true, especially in genomics and physics. However, it’s this collaboration and cooperation between scientists, and between fields, that has helped science progress past where we ever thought possible. While Simonton uses “hybrid” fields like astrophysics and biochemistry to illustrate his argument that there is no room for completely new scientific disciplines, I see these fields as having room for growth. Here, diverse sets of ideas and methodologies can mix and lead to innovation.

Simonton is quick to assert that the end of scientific genius doesn’t mean science is at a standstill or that scientists are no longer smart. In fact, he argues the opposite: scientists are probably more intelligent now, since they must master more theoretical work, more complicated methods, and more diverse disciplines. In fact, Simonton himself would like to be wrong; “I hope that my thesis is incorrect. I would hate to think that genius in science has become extinct,” he writes.

[div class=attrib]Read the entire article after the jump.[end-div]

[div class=attrib]Image: Einstein 1921 by F. Schmutzer. Courtesy of Wikipedia.[end-div]

Charles Darwin Runs for Office

British voters may recall Screaming Lord Sutch, 3rd Earl of Harrow, of the Official Monster Raving Loony Party, who ran in over 40 parliamentary elections during the 1980s and 90s. He never won, but garnered a respectable number of votes and many fans (he was also a musician).

The United States followed a more dignified path in the 2012 elections, when Charles Darwin ran for a Congressional seat in Georgia. Darwin failed to win, but collected a respectable 4,000 votes. His opponent, Paul Broun, believes that the Earth “is but about 9,000 years old”. Interestingly, Representative Broun serves on the United States House Committee on Science, Space and Technology.

[div class=attrib]From Slate:[end-div]

Anti-evolution Congressman Paul Broun (R-Ga.) ran unopposed in Tuesday’s election, but nearly 4,000 voters wrote in Charles Darwin to protest their representative’s views. (Broun called evolution “lies straight from the pit of hell.”) Darwin fell more than 205,000 votes short of victory, but what would have happened if the father of evolution had out-polled Broun?

Broun still would have won. Georgia, like many other states, doesn’t count votes for write-in candidates who have not filed a notice of intent to stand for election. Even if the finally tally had been reversed, with Charles Darwin winning 209,000 votes and Paul Broun 4,000, Broun would have kept his job.

That’s not to say dead candidates can’t win elections. It happens all the time, but only when the candidate dies after being placed on the ballot. In Tuesday’s election, Orange County, Fla., tax collector Earl Wood won more than 56 percent of the vote, even though he died in October at the age of 96 after holding the office for more than 40 years. Florida law allowed the Democratic Party, of which Wood was a member, to choose a candidate to receive Wood’s votes. In Alabama, Charles Beasley won a seat on the Bibb County Commission despite dying on Oct. 12. (Beasley’s opponent lamented the challenge of running a negative campaign against a dead man.) The governor will appoint a replacement.

[div class=attrib]Read the entire article after the jump.[end-div]

Five Big Additions to Darwin’s Theory of Evolution

[div class=attrib]From Discover:[end-div]

Charles Darwin would have turned 200 in 2009, the same year his book On the Origin of Species celebrated its 150th anniversary. Today, with the perspective of time, Darwin’s theory of evolution by natural selection looks as impressive as ever. In fact, the double anniversary year saw progress on fronts that Darwin could never have anticipated, bringing new insights into the origin of life—a topic that contributed to his panic attacks, heart palpitations, and, as he wrote, “for 25 years extreme spasmodic daily and nightly flatulence.” One can only dream of what riches await in the biology textbooks of 2159.

1. Evolution happens on the inside, too. The battle for survival is waged not just between the big dogs but within the dog itself, as individual genes jockey for prominence. From the moment of conception, a father’s genes favor offspring that are large, strong, and aggressive (the better to court the ladies), while the mother’s genes incline toward smaller progeny that will be less of a burden, making it easier for her to live on and procreate. Genome-versus-genome warfare produces kids that are somewhere in between.

Not all genetic conflicts are resolved so neatly. In flour beetles, babies that do not inherit the selfish genetic element known as Medea succumb to a toxin while developing in the egg. Some unborn mice suffer the same fate. Such spiteful genes have become widespread not by helping flour beetles and mice survive but by eliminating individuals that do not carry the killer’s code. “There are two ways of winning a race,” says Caltech biologist Bruce Hay. “Either you can be better than everyone else, or you can whack the other guys on the legs.”

Hay is trying to harness the power of such genetic cheaters, enlisting them in the fight against malaria. He created a Medea-like DNA element that spreads through experimental fruit flies like wildfire, permeating an entire population within 10 generations. This year he and his team have been working on encoding immune-system boosters into those Medea genes, which could then be inserted into male mosquitoes. If it works, the modified mosquitoes should quickly replace competitors who do not carry the new genes; the enhanced immune systems of the new mosquitoes, in turn, would resist the spread of the malaria parasite.

2. Identity is not written just in the genes. According to modern evolutionary theory, there is no way that what we eat, do, and encounter can override the basic rules of inheritance: What is in the genes stays in the genes. That single rule secured Darwin’s place in the science books. But now biologists are finding that nature can break those rules. This year Eva Jablonka, a theoretical biologist at Tel Aviv University, published a compendium of more than 100 hereditary changes that are not carried in the DNA sequence. This “epigenetic” inheritance spans bacteria, fungi, plants, and animals.

[div class=attrib]More from theSource here.[end-div]