Tag Archives: experiment

Girlfriend or Nuclear Reactor?

YellowcakeAsk a typical 14 year-old boy if he’d prefer to have a girlfriend or a home-made nuclear fission reactor he’s highly likely to gravitate towards the former. Not so Taylor Wilson; he seems to prefer the company of Geiger counters, particle accelerators, vacuum tubes and radioactive materials.

From the Guardian:

Taylor Wilson has a Geiger counter watch on his wrist, a sleek, sporty-looking thing that sounds an alert in response to radiation. As we enter his parents’ garage and approach his precious jumble of electrical equipment, it emits an ominous beep. Wilson is in full flow, explaining the old-fashioned control panel in the corner, and ignores it. “This is one of the original atom smashers,” he says with pride. “It would accelerate particles up to, um, 2.5m volts – so kind of up there, for early nuclear physics work.” He pats the knobs.

It was in this garage that, at the age of 14, Wilson built a working nuclear fusion reactor, bringing the temperature of its plasma core to 580mC – 40 times as hot as the core of the sun. This skinny kid from Arkansas, the son of a Coca-Cola bottler and a yoga instructor, experimented for years, painstakingly acquiring materials, instruments and expertise until he was able to join the elite club of scientists who have created a miniature sun on Earth.

Not long after, Wilson won $50,000 at a science fair, for a device that can detect nuclear materials in cargo containers – a counter-terrorism innovation he later showed to a wowed Barack Obama at a White House-sponsored science fair.

Wilson’s two TED talks (Yup, I Built A Nuclear Fusion Reactor and My Radical Plan For Small Nuclear Fission Reactors) have been viewed almost 4m times. A Hollywood biopic is planned, based on an imminent biography. Meanwhile, corporations have wooed him and the government has offered to buy some of his inventions. Former US under-secretary for energy, Kristina Johnson, told his biographer, Tom Clynes: “I would say someone like him comes along maybe once in a generation. He’s not just smart – he’s cool and articulate. I think he may be the most amazing kid I’ve ever met.”

Seven years on from fusing the atom, the gangly teen with a mop of blond hair is now a gangly 21-year-old with a mop of blond hair, who shuttles between his garage-cum-lab in the family’s home in Reno, Nevada, and other more conventional labs. In addition to figuring out how to intercept dirty bombs, he looks at ways of improving cancer treatment and lowering energy prices – while plotting a hi-tech business empire around the patents.

As we tour his parents’ garage, Wilson shows me what appears to be a collection of nuggets. His watch sounds another alert, but he continues lovingly to detail his inventory. “The first thing I got for my fusion project was a mass spectrometer from an ex-astronaut in Houston, Texas,” he explains. This was a treasure he obtained simply by writing a letter asking for it. He ambles over to a large steel safe, with a yellow and black nuclear hazard sticker on the front. He spins the handle, opens the door and extracts a vial with pale powder in it.

“That’s some yellowcake I made – the famous stuff that Saddam Hussein was supposedly buying from Niger. This is basically the starting point for nuclear, whether it’s a weapons programme or civilian energy production.” He gives the vial a shake. A vision of dodgy dossiers, atomic intrigue and mushroom clouds swims before me, a reverie broken by fresh beeping. “That’ll be the allanite. It’s a rare earth mineral,” Wilson explains. He picks up a dark, knobbly little rock streaked with silver. “It has thorium, a potential nuclear fuel.”

I think now may be a good moment to exit the garage, but the tour is not over. “One of the things people are surprised by is how ubiquitous radiation and radioactivity is,” Wilson says, giving me a reassuring look. “I’m very cautious. I’m actually a bit of a hypochondriac. It’s all about relative risk.”

He paces over to a plump steel tube, elevated to chest level – an object that resembles an industrial vacuum cleaner, and gleams in the gloom. This is the jewel in Wilson’s crown, the reactor he built at 14, and he gives it a tender caress. “This is safer than many things,” he says, gesturing to his Aladdin’s cave of atomic accessories. “For instance, horse riding. People fear radioactivity because it is very mysterious. You want to have respect for it, but not be paralysed by fear.”

The Wilson family home is a handsome, hacienda-style house tucked into foothills outside Reno. Unusually for the high desert at this time of year, grey clouds with bellies of rain rumble overhead. Wilson, by contrast, is all sunny smiles. He is still the slightly ethereal figure you see in the TED talks (I have to stop myself from offering him a sandwich), but the handshake is firm, the eye contact good and the energy enviable – even though Wilson has just flown back from a weekend visiting friends in Los Angeles. “I had an hour’s sleep last night. Three hours the night before that,” he says, with a hint of pride.

He does not drink or smoke, is a natty dresser (in suede jacket, skinny tie, jeans and Converse-style trainers) and he is a talker. From the moment we meet until we part hours later, he talks and talks, great billows of words about the origin of his gift and the responsibility it brings; about trying to be normal when he knows he’s special; about Fukushima, nuclear power and climate change; about fame and ego, and seeing his entire life chronicled in a book for all the world to see when he’s barely an adult and still wrestling with how to ask a girl out on a date.

The future feels urgent and mysterious. “My life has been this series of events that I didn’t see coming. It’s both exciting and daunting to know you’re going to be constantly trying to one-up yourself,” he says. “People can have their opinions about what I should do next, but my biggest pressure is internal. I hate resting on laurels. If I burn out, I burn out – but I don’t see that happening. I’ve more ideas than I have time to execute.”

Wilson credits his parents with huge influence, but wavers on the nature versus nurture debate: was he born brilliant or educated into it? “I don’t have an answer. I go back and forth.” The pace of technological change makes predicting his future a fool’s errand, he says. “It’s amazing – amazing – what I can do today that I couldn’t have done if I was born 10 years earlier.” And his ambitions are sky-high: he mentions, among many other plans, bringing electricity and state-of-the-art healthcare to the developing world.

Read the entire fascinating story here.

Image: Yellowcake, a type of uranium concentrate powder, an intermediate step in the processing of uranium ores. Courtesy of United States Department of Energy. Public Domain.

Wolfgang Pauli’s Champagne

PauliAustrian theoretical physicist dreamed up neutrinos in 1930, and famously bet a case of fine champagne that these ghostly elementary particles would never be found. Pauli lost the bet in 1956. Since then researchers have made great progress both theoretically and experimentally in trying to delve into the neutrino’s secrets. Two new books describe the ongoing quest.

From the Economist:

Neutrinoa are weird. The wispy particles are far more abundant than the protons and electrons that make up atoms. Billions of them stream through every square centimetre of Earth’s surface each second, but they leave no trace and rarely interact with anything. Yet scientists increasingly agree that they could help unravel one of the biggest mysteries in physics: why the cosmos is made of matter.

Neutrinos’ scientific history is also odd, as two new books explain. The first is “Neutrino Hunters” by Ray Jayawardhana, a professor of astrophysics at the University of Toronto (and a former contributor to The Economist). The second, “The Perfect Wave”, is by Heinrich Päs, a neutrino theorist from Technical University in the German city of Dortmund.

The particles were dreamed up in 1930 by Wolfgang Pauli, an Austrian, to account for energy that appeared to go missing in a type of radioactivity known as beta decay. Pauli apologised for what was a bold idea at a time when physicists knew of just two subatomic particles (protons and electrons), explaining that the missing energy was carried away by a new, electrically neutral and, he believed, undetectable subatomic species. He bet a case of champagne that it would never be found.

Pauli lost the wager in 1956 to two Americans, Frederick Reines and Clyde Cowan. The original experiment they came up with to test the hypothesis was unorthodox. It involved dropping a detector down a shaft within 40 metres of an exploding nuclear bomb, which would act as a source of neutrinos. Though Los Alamos National Laboratory approved the experiment, the pair eventually chose a more practical approach and buried a detector near a powerful nuclear reactor at Savannah River, South Carolina, instead. (Most neutrino detectors are deep underground to shield them from cosmic rays, which can cause similar signals.)

However, as other experiments, in particular those looking for neutrinos in the physical reactions which power the sun, strove to replicate Reines’s and Cowan’s result, they hit a snag. The number of solar neutrinos they recorded was persistently just one third of what theory said the sun ought to produce. Either the theorists had made a mistake, the thinking went, or the experiments had gone awry.

In fact, both were right all along. It was the neutrinos that, true to form, behaved oddly. As early as 1957 Bruno Pontecorvo, an Italian physicist who had defected to the Soviet Union seven years earlier, suggested that neutrinos could come in different types, known to physicists as “flavours”, and that they morph from one type to another on their way from the sun to Earth. Other scientists were sceptical. Their blueprint for how nature works at the subatomic level, called the Standard Model, assumed that neutrinos have no mass. This, as Albert Einstein showed, is the same as saying they travel at the speed of light. On reaching that speed time stops. If neutrinos switch flavours they would have to experience change, and thus time. That means they would have to be slower than light. In other words, they would have mass. (A claim in 2011 by Italian physicists working with CERN, Europe’s main physics laboratory, that neutrinos broke Einstein’s speed limit turned out to be the result of a loose cable.)

Pontecorvo’s hypothesis was proved only in 1998, in Japan. Others have since confirmed the phenomenon known as “oscillation”. The Standard Model had to be tweaked to make room for neutrino mass. But scientists still have little idea about how much any of the neutrinos actually weigh, besides being at least 1m times lighter than an electron.

The answer to the weight question, as well as a better understanding of neutrino oscillations, may help solve the puzzle of why the universe is full of matter. One explanation boffins like a lot because of its elegant maths invokes a whole new category of “heavy” neutrino decaying more readily into matter than antimatter. If that happened a lot when the universe began, then there would have been more matter around than antimatter, and when the matter and antimatter annihilated each other, as they are wont to do, some matter (ie, everything now visible) would be left over. The lighter the known neutrinos, according to this “seesaw” theory, the heftier the heavy sort would have to be. A heavy neutrino has yet to be observed, and may well, as Pauli described it, be unobservable. But a better handle on the light variety, Messrs Jayawardhana and Päs both agree, may offer important clues.

These two books complement each other. Mr Jayawardhana’s is stronger on the history (though his accounts of the neutrino hunters’ personal lives can read a little too much like a professional CV). It is also more comprehensive on the potential use of neutrinos in examining the innards of the sun, of distant exploding stars or of Earth, as well as more practical uses such as fingering illicit nuclear-enrichment programmes (since they spew out a telltale pattern of the particles).

Read the entire article here.

Image: Wolfgang Pauli, c1945. Courtesy of Wikipedia.

Everywhere And Nowhere

Most physicists believe that dark matter exists, but have never seen it, only deduced its existence. This is a rather unsettling state of affairs since by most estimates dark matter (and possibly dark energy) accounts for 95 percent of the universe. The stuff we are made from, interact with and see on a daily basis — atoms, their constituents and their forces — is a mere 5 percent.

From the Atlantic:

Here’s a little experiment.

Hold up your hand.

Now put it back down.

In that window of time, your hand somehow interacted with dark matter — the mysterious stuff that comprises the vast majority of the universe. “Our best guess,” according to Dan Hooper, an astronomy professor at the University of Chicago and a theoretical astrophysicist at the Fermi National Accelerator Laboratory, “is that a million particles of dark matter passed through your hand just now.”

Dark matter, in other words, is not merely the stuff of black holes and deep space. It is all around us. Somehow. We’re pretty sure.

But if you did the experiment — as the audience at Hooper’s talk on dark matter and other cosmic mysteries did at the Aspen Ideas Festival today — you didn’t feel those million particles. We humans have no sense of their existence, Hooper said, in part because they don’t hew to the forces that regulate our movement in the world — gravity, electromagnetism, the forces we can, in some way, feel. Dark matter, instead, is “this ghostly, elusive stuff that dominates our universe,” Hooper said.

It’s everywhere. And it’s also, as far as human knowledge is concerned, nowhere.

And yet, despite its mysteries, we know it’s out there. “All astronomers are in complete conviction that there is dark matter,” said Richard Massey, the lead author of a recent study mapping the dark matter of the universe, and Hooper’s co-panelist. The evidence for its existence, Hooper agreed, is “overwhelming.” And yet it’s evidence based on deduction: through our examinations of the observable universe, we make assumptions about the unobservable version.

Dark matter, in other words, is aptly named. A full 95 percent of the universe — the dark matter, the stuff that both is and is not — is effectively unknown to us. “All the science that we’ve ever done only ever examines five percent of the universe,” Massey said. Which means that there are still mysteries to be unraveled, and dark truths to be brought to light.

And it also means, Massey pointed out, that for scientists, “the job security is great.”

You might be wondering, though: given how little we know about dark matter, how is it that Hooper knew that a million particles of the stuff passed through your hand as you raised and lowered it?

“I cheated a little,” Hooper admitted. He assumed a particular mass for the individual particles. “We know what the density of dark matter is on Earth from watching how the Milky Way rotates. And we know roughly how fast they’re going. So you take those two bits of information, and all you need to know is how much mass each individual particle has, and then I can get the million number. And I assumed a kind of traditional guess. But it could be 10,000 higher; it could be 10,000 lower.”

Read the entire article here.

Nuclear Fission in the Kitchen

theDiagonal usually does not report on the news. Though we do make a few worthy exceptions based on the import or surreal nature of the event. A case in point below.

Humans do have a curious way of repeating history. In a less meticulous attempt to re-enact the late-90s true story, which eventually led to the book “The Radioactive Boy Scout“, a Swedish man was recently arrested for trying to set up a nuclear reactor in his kitchen.

[div class=attrib]From the AP:[end-div]

A Swedish man who was arrested after trying to split atoms in his kitchen said Wednesday he was only doing it as a hobby.

Richard Handl told The Associated Press that he had the radioactive elements radium, americium and uranium in his apartment in southern Sweden when police showed up and arrested him on charges of unauthorized possession of nuclear material.

The 31-year-old Handl said he had tried for months to set up a nuclear reactor at home and kept a blog about his experiments, describing how he created a small meltdown on his stove.

Only later did he realize it might not be legal and sent a question to Sweden’s Radiation Authority, which answered by sending the police.

“I have always been interested in physics and chemistry,” Handl said, adding he just wanted to “see if it’s possible to split atoms at home.”

[div class=attrib]More from theSource here.[end-div]