Tag Archives: hydrogen

Nuclear Near Miss

Just over 50 years ago the United States Air Force came within a hair’s breadth of destroying much of the South Eastern part of the country. While on a routine flight along the eastern seaboard of the United States, a malfunctioning B-52 bomber accidentally dropped two 4-Megaton hydrogen bombs over Goldsboro, North Carolina on 23 January 1961.

Had either one of these bombs exploded — with a force over 200 times that of the bomb dropped over Hiroshima — the effects would have been calamitous.

From the Guardian:

A secret document, published in declassified form for the first time by the Guardian today, reveals that the US Air Force came dramatically close to detonating an atom bomb over North Carolina that would have been 260 times more powerful than the device that devastated Hiroshima.

The document, obtained by the investigative journalist Eric Schlosser under the Freedom of Information Act, gives the first conclusive evidence that the US was narrowly spared a disaster of monumental proportions when two Mark 39 hydrogen bombs were accidentally dropped over Goldsboro, North Carolina on 23 January 1961. The bombs fell to earth after a B-52 bomber broke up in mid-air, and one of the devices behaved precisely as a nuclear weapon was designed to behave in warfare: its parachute opened, its trigger mechanisms engaged, and only one low-voltage switch prevented untold carnage.

Each bomb carried a payload of 4 megatons – the equivalent of 4 million tons of TNT explosive. Had the device detonated, lethal fallout could have been deposited over Washington, Baltimore, Philadelphia and as far north as New York city – putting millions of lives at risk.

Though there has been persistent speculation about how narrow the Goldsboro escape was, the US government has repeatedly publicly denied that its nuclear arsenal has ever put Americans’ lives in jeopardy through safety flaws. But in the newly-published document, a senior engineer in the Sandia national laboratories responsible for the mechanical safety of nuclear weapons concludes that “one simple, dynamo-technology, low voltage switch stood between the United States and a major catastrophe”.

Writing eight years after the accident, Parker F Jones found that the bombs that dropped over North Carolina, just three days after John F Kennedy made his inaugural address as president, were inadequate in their safety controls and that the final switch that prevented disaster could easily have been shorted by an electrical jolt, leading to a nuclear burst. “It would have been bad news – in spades,” he wrote.

Jones dryly entitled his secret report “Goldsboro Revisited or: How I learned to Mistrust the H-Bomb” – a quip on Stanley Kubrick’s 1964 satirical film about nuclear holocaust, Dr Strangelove or: How I Learned to Stop Worrying and Love the Bomb.

The accident happened when a B-52 bomber got into trouble, having embarked from Seymour Johnson Air Force base in Goldsboro for a routine flight along the East Coast. As it went into a tailspin, the hydrogen bombs it was carrying became separated. One fell into a field near Faro, North Carolina, its parachute draped in the branches of a tree; the other plummeted into a meadow off Big Daddy’s Road.

Read the entire article here.

Image: Nuclear weapon test Romeo (yield 11 Mt) on Bikini Atoll. The test was part of the Operation Castle. Romeo was the first nuclear test conducted on a barge. The barge was located in the Bravo crater. Courtesy of Wikipedia.

Cheap Hydrogen

Researchers at the University of Glasgow, Scotland, have discovered an alternative and possibly more efficient way to make hydrogen at industrial scales. Typically, hydrogen is produced from reacting high temperature steam with methane or natural gas. A small volume of hydrogen, less than five percent annually, is also made through the process of electrolysis — passing an electric current through water.

This new method of production appears to be less costly, less dangerous and also more environmentally sound.

From the Independent:

Scientists have harnessed the principles of photosynthesis to develop a new way of producing hydrogen – in a breakthrough that offers a possible solution to global energy problems.

The researchers claim the development could help unlock the potential of hydrogen as a clean, cheap and reliable power source.

Unlike fossil fuels, hydrogen can be burned to produce energy without producing emissions. It is also the most abundant element on the planet.

Hydrogen gas is produced by splitting water into its constituent elements – hydrogen and oxygen. But scientists have been struggling for decades to find a way of extracting these elements at different times, which would make the process more energy-efficient and reduce the risk of dangerous explosions.

In a paper published today in the journal Nature Chemistry, scientists at the University of Glasgow outline how they have managed to replicate the way plants use the sun’s energy to split water molecules into hydrogen and oxygen at separate times and at separate physical locations.

Experts heralded the “important” discovery yesterday, saying it could make hydrogen a more practicable source of green energy.

Professor Xile Hu, director of the Laboratory of Inorganic Synthesis and Catalysis at the Swiss Federal Institute of Technology in Lausanne, said: “This work provides an important demonstration of the principle of separating hydrogen and oxygen production in electrolysis and is very original. Of course, further developments are needed to improve the capacity of the system, energy efficiency, lifetime and so on. But this research already  offers potential and promise and can help in making the storage of green  energy cheaper.”

Until now, scientists have separated hydrogen and oxygen atoms using electrolysis, which involves running electricity through water. This is energy-intensive and potentially explosive, because the oxygen and hydrogen are removed at the same time.

But in the new variation of electrolysis developed at the University of Glasgow, hydrogen and oxygen are produced from the water at different times, thanks to what researchers call an “electron-coupled proton buffer”. This acts to collect and store hydrogen while the current runs through the water, meaning that in the first instance only oxygen is released. The hydrogen can then be released when convenient.

Because pure hydrogen does not occur naturally, it takes energy to make it. This new version of electrolysis takes longer, but is safer and uses less energy per minute, making it easier to rely on renewable energy sources for the electricity needed to separate  the atoms.

Dr Mark Symes, the report’s co-author, said: “What we have developed is a system for producing hydrogen on an industrial scale much more cheaply and safely than is currently possible. Currently much of the industrial production of hydrogen relies on reformation of fossil fuels, but if the electricity is provided via solar, wind or wave sources we can create an almost totally clean source of power.”

Professor Lee Cronin, the other author of the research, said: “The existing gas infrastructure which brings gas to homes across the country could just as easily carry hydrogen as it  currently does methane. If we were to use renewable power to generate hydrogen using the cheaper, more efficient decoupled process we’ve created, the country could switch to hydrogen  to generate our electrical power  at home. It would also allow us to  significantly reduce the country’s  carbon footprint.”

Nathan Lewis, a chemistry professor at the California Institute of Technology and a green energy expert, said: “This seems like an interesting scientific demonstration that may possibly address one of the problems involved with water electrolysis, which remains a relatively expensive method of producing hydrogen.”

Read the entire article following the jump.

A Power Grid for the Hydrogen Economy

[div class=attrib]From Scientific American:[end-div]

On the afternoon of August 14, 2003, electricity failed to arrive in New York City, plunging the eight million inhabitants of the Big Apple–along with 40 million other people throughout the northeastern U.S. and Ontario–into a tense night of darkness. After one power plant in Ohio had shut down, elevated power loads overheated high-voltage lines, which sagged into trees and short-circuited. Like toppling dominoes, the failures cascaded through the electrical grid, knocking 265 power plants offline and darkening 24,000 square kilometers.

That incident–and an even more extensive blackout that affected 56 million people in Italy and Switzerland a month later–called attention to pervasive problems with modern civilization’s vital equivalent of a biological circulatory system, its interconnected electrical networks. In North America the electrical grid has evolved in piecemeal fashion over the past 100 years. Today the more than $1-trillion infrastructure spans the continent with millions of kilometers of wire operating at up to 765,000 volts. Despite its importance, no single organization has control over the operation, maintenance or protection of the grid; the same is true in Europe. Dozens of utilities must cooperate even as they compete to generate and deliver, every second, exactly as much power as customers demand–and no more. The 2003 blackouts raised calls for greater government oversight and spurred the industry to move more quickly, through its Intelli-Grid Consortium and the Grid-Wise program of the U.S. Department of Energy, to create self-healing systems for the grid that may prevent some kinds of outages from cascading. But reliability is not the only challenge–and arguably not even the most important challenge–that the grid faces in the decades ahead.

[div class=attrib]More from theSource here.[end-div]