[div class=attrib]From New Scientist:[end-div]
Space is festooned with vast “hyperclusters” of galaxies, a new cosmic map suggests. It could mean that gravity or dark energy – or perhaps something completely unknown – is behaving very strangely indeed.
We know that the universe was smooth just after its birth. Measurements of the cosmic microwave background radiation (CMB), the light emitted 370,000 years after the big bang, reveal only very slight variations in density from place to place. Gravity then took hold and amplified these variations into today’s galaxies and galaxy clusters, which in turn are arranged into big strings and knots called superclusters, with relatively empty voids in between.
On even larger scales, though, cosmological models say that the expansion of the universe should trump the clumping effect of gravity. That means there should be very little structure on scales larger than a few hundred million light years across.
But the universe, it seems, did not get the memo. Shaun Thomas of University College London (UCL), and colleagues have found aggregations of galaxies stretching for more than 3 billion light years. The hyperclusters are not very sharply defined, with only a couple of per cent variation in density from place to place, but even that density contrast is twice what theory predicts.
“This is a challenging result for the standard cosmological models,” says Francesco Sylos Labini of the University of Rome, Italy, who was not involved in the work.
Colour guide
The clumpiness emerges from an enormous catalogue of galaxies called the Sloan Digital Sky Survey, compiled with a telescope at Apache Point, New Mexico. The survey plots the 2D positions of galaxies across a quarter of the sky. “Before this survey people were looking at smaller areas,” says Thomas. “As you look at more of the sky, you start to see larger structures.”
A 2D picture of the sky cannot reveal the true large-scale structure in the universe. To get the full picture, Thomas and his colleagues also used the colour of galaxies recorded in the survey.
More distant galaxies look redder than nearby ones because their light has been stretched to longer wavelengths while travelling through an expanding universe. By selecting a variety of bright, old elliptical galaxies whose natural colour is well known, the team calculated approximate distances to more than 700,000 objects. The upshot is a rough 3D map of one quadrant of the universe, showing the hazy outlines of some enormous structures.
[div class=attrib]More from theSource here.[end-div]