Tag Archives: NASA

Time to Move to Trappist-1

Those bright women and men at NASA have done it again. This time they’ve discovered 7 exoplanets all revolving around the same distant star. The cool news is that on the cosmological distance scale it’s relatively close, only around 40-light years away — a mere 230 trillion miles or so. And, even more fascinating, three of the system’s planets are within the so-called “Goldilocks” habitable zone.

The system is named TRAPPIST-1 (Transiting Planets and Planetesimals Small Telescope). The TRAPPIST telescope in Chile originally discovered 3  exoplanets. Now, using NASA’s Spitzer Space Telescope and the European Southern Observatory’s Very Large Telescope, researchers have upped the total to 7 exoplanets.

I’m ready. Now, just need a spacecraft, and a quick one at that.

From NASA:

NASA’s Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in the habitable zone, the area around the parent star where a rocky planet is most likely to have liquid water.

The discovery sets a new record for greatest number of habitable-zone planets found around a single star outside our solar system. All of these seven planets could have liquid water – key to life as we know it – under the right atmospheric conditions, but the chances are highest with the three in the habitable zone.

“This discovery could be a significant piece in the puzzle of finding habitable environments, places that are conducive to life,” said Thomas Zurbuchen, associate administrator of the agency’s Science Mission Directorate in Washington. “Answering the question ‘are we alone’ is a top science priority and finding so many planets like these for the first time in the habitable zone is a remarkable step forward toward that goal.”

Read more here.

Image: An illustration of seven Earth-sized planets observed by NASA’s Spitzer Space Telescope around a tiny, nearby, ultra-cool dwarf star called TRAPPIST-1. Three of these planets are firmly in the habitable zone. Courtesy: NASA.

Send to Kindle

Reliving the Titan Descent

A couple of days ago NASA released this gorgeous video constructed from real images taken by the Huygens lander. This revisits Huygen’s successful landing on Titan — Saturn’s largest moon, just over 12 years ago, on January 14, 2005.

Huygens made up half of the Cassini-Huygens joint NASA-ESA (European Space Agency) mission to investigate Saturn and its strange moons. Cassini is currently still in close orbit around Saturn. To date the mission remains the first to successfully land on a moon beyond Earth’s own.

Video: This movie was built thanks to the data collected by ESA’s Huygens Descent Imager/Spectral Radiometer (DISR) on 14 January 2005, during the 147-minutes plunge through Titan’s thick orange-brown atmosphere to a soft sandy riverbed. In 4 minutes 40 seconds, the movie shows what the probe ‘saw’ within the few hours of the descent and the eventual landing. Courtesy: NASA/ESA.

Send to Kindle

Europa, Europa


A couple of days ago, September 26, 2016, tens of millions of us tuned in to the gory — and usually devoid of fact — spectacle that is the US Presidential election debate. On the same day, something else rather newsworthy took place; some would say much more important than watching two adults throw puerile nonsense at one another.

NASA has found evidence of water plumes spouting from a subsurface ocean on Europa, Jupiter’s fourth largest moon. The agency used the Hubble Space Telescope to look for signs of plumes as the icy moon transited Jupiter.

This should make for an fascinating encounter when NASA launches a mission in 2020 to examine Europa more closely, especially to investigate whether it could harbor conditions suitable for life.

Image: Trailing hemisphere of Jupiter’s ice-covered satellite, Europa. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth’s moon. Courtesy: NASA/JPL/DLR (Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany).

Send to Kindle

Osiris-Rex and Bennu


You might be mistaken for thinking Osiris-Rex and Bennu are the names of two rather exotic dogs. No.

Bennu is a 1,500 foot wide space rock, which circles the Sun at around 60,000 mph. OSIRIS-REx is the space probe which aims to catch the near-Earth asteroid in 2018 and return samples back to Earth in 2023. NASA is scheduled to launch OSIRIS-REx from aboard an Atlas V rocket on September 8, 2016, from Cape Canaveral in Florida. Follow NASA’s asteroid mission here.

In case you were wondering, as is NASA’s wont, OSIRIS-REx is of course a convoluted acronym for the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer spacecraft.

From the Guardian:

At Cape Canaveral air force station on the Florida coast stands an Atlas V rocket bearing the Osiris-Rex probe, Nasa’s first hope to smash-and-grab material from a speeding asteroid and bring it safely back to Earth.

The size of a transit van, the two-tonne spacecraft is set to blast off Thursday night on a seven-year mission to a 500m-wide ball of rubble called Bennu, which circles the sun at more than 100,000km per hour.

The probe is the third of Nasa’s ambitious New Frontiers missions. It follows on the heels of the New Horizons spacecraft, which last year beamed home stunning images from Pluto, and the Juno spacecraft, which arrived at Jupiter in July.

In returning a pile of asteroid to Earth, scientists hope to learn more about the source of water in the solar system and the origins of organic molecules from which life first arose. But getting their hands on pristine asteroid will also give researchers fresh clues about how to mine the bodies for valuable materials, and defend against wayward space rocks that may one day threaten our planet.

The mission has a title that is unwieldy even for the US space agency. Osiris-Rex stands for Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer. “It is a mouthful,” said Ed Beshore, deputy principal investigator on the mission at Arizona State University. “But the name really does speak to our principal mission objectives.”

Bennu orbits the sun on a similar path to Earth. Classified as a “potentially hazardous asteroid”, it swings close to the Earth – in cosmic terms, at least – once every six years. The nearest encounter scientists can predict is slated for 2135, when the coal-black space rock will hurtle between Earth and the moon at a distance of 300,000km.

One major question the mission will ask is how sunlight affects the orbits of asteroids. As they spin close to the sun asteroids are constantly heating up and cooling down. The heat the asteroid re-emits to space provides a minuscule thrust which over time can alter its course. But the effect is hard to quantify. “Often when we look at asteroids that may be a hazard to Earth, the limiting factor in predicting the orbit is this process called the Yarkovsky effect,” said Beshore. “We’d like to understand that and measure it much more precisely when we’re at Bennu and in doing so improve our predictive accuracy for other asteroids that may represent a future threat to Earth.”

Osiris-Rex aims to catch up with Bennu in August 2018 and spend two years mapping the surface. When mission scientists find a good spot, it will swoop down, blast the asteroid with a powerful jet of nitrogen, and collect dislodged material with a robotic arm. Once the material is safely aboard, the spacecraft will retreat and later send it home in a capsule due to land via parachute in the Utah desert in 2023.

Read the whole story here.

Image: Artist concept of OSIRIS-REx probe traveling to near-Earth asteroid Bennu on a sample return mission. Courtesy: NASA.

Send to Kindle

The Transit of Dione


This gorgeous image of Saturn’s moon Dione as it transits the gas giant was snapped by the Cassini spacecraft on May 27, 2015. For more beautiful views of the stunning ringed planet and its curious moons visit NASA’s Cassini mission site.

Image: Saturn’s moon Dione transits the giant ringed planet. Courtesy: NASA/JPL-Caltech/Space Science Institute in Boulder, Colorado.



Send to Kindle

Juno on the 4th of July

Jupiter and Ganymede

Perhaps not coincidentally, NASA’s latest foray into the great beyond reached a key milestone today. The Juno spacecraft entered orbit around the gas giant Jupiter on the 4th of July, 2016.

NASA is still awaiting all the cool science (and image-capture) to begin. So, in the meantime I’m posting an gorgeous picture taken of Jupiter by the Hubble Space Telescope.

Image: Jupiter and Ganymede, Taken April 9, 2007. Courtesy: Credit: NASA, ESA, and E. Karkoschka (University of Arizona).

Send to Kindle

What Keeps NASA Going?

Apollo 17 Commander Gene Cernan on lunar rover

Apollo astronaut Eugene Cernan is the last human to have set foot on a world other than Earth. It’s been 44 years since he last stepped off the moon. In fact, in 1972 he drove around using the lunar rover and found time to scribble his daughter’s initials on the dusty lunar surface. So, other than forays to the International Space Station (ISS) and trips to service the Hubble Space Telescope (HST) NASA has kept humans firmly rooted to the homeland.

Of course, in the intervening decades the space agency has not rested on its laurels. NASA has sent probes and robots all over the Solar System and beyond: Voyager to the gas giants and on to interstellar space,  Dawn to visit asteroids; Rosetta (in concert with the European Space Agency) to visit a comet; SOHO and its countless cousins to keep an eye on our home star; Galileo and Pioneer to Jupiter; countless spacecraft including Curiosity Rover to Mars; Messenger to map Mercury; Magellan to probe the clouds of Venus; Cassini to survey Saturn and its fascinating moons; and of course, New Horizons to Pluto and beyond.

Spiral galaxies together with irregular galaxies make up approximately 60% of the galaxies in the local Universe. However, despite their prevalence, each spiral galaxy is unique — like snowflakes, no two are alike. This is demonstrated by the striking face-on spiral galaxy NGC 6814, whose luminous nucleus and spectacular sweeping arms, rippled with an intricate pattern of dark dust, are captured in this NASA/ESA Hubble Space Telescope image. NGC 6814 has an extremely bright nucleus, a telltale sign that the galaxy is a Seyfert galaxy. These galaxies have very active centres that can emit strong bursts of radiation. The luminous heart of NGC 6814 is a highly variable source of X-ray radiation, causing scientists to suspect that it hosts a supermassive black hole with a mass about 18 million times that of the Sun. As NGC 6814 is a very active galaxy, many regions of ionised gas are studded along  its spiral arms. In these large clouds of gas, a burst of star formation has recently taken place, forging the brilliant blue stars that are visible scattered throughout the galaxy.

Our mechanical human proxies reach out a little farther each day to learn more about our universe and our place in it. Exploration and discovery is part of our human DNA; it’s what we do. NASA is our vehicle. So, it’s good to see what NASA is planning. The agency just funded eight advanced-technology programs that officials believe may help transform space exploration. The grants are part of the NASA Innovative Advanced Concepts (NIAC) program. The most interesting, perhaps, are a program to evaluate inducing hibernation in Mars-bound astronauts, and an assessment of directed energy propulsion for interstellar travel.

Our science and technology becomes more and more like science fiction each day.

Read more about NIAC programs here.

Image 1: Apollo 17 mission commander Eugene A. Cernan makes a short checkout of the Lunar Roving Vehicle during the early part of the first Apollo 17 extravehicular activity at the Taurus-Littrow landing site. Courtesy: NASA.

Image 2: Hubble Spies a Spiral Snowflake, galaxy NGC 6814. Courtesy: NASA/ESA Hubble Space Telescope.

Send to Kindle

A Trip to Titan

titanNASA is advertising its upcoming space tourism trip to Saturn’s largest moon Titan with this gorgeous retro poster.

Just imagine rowing across Titan’s lakes and oceans, and watching Saturn set below the horizon. So, dump that planned cruise down the Danube and hike to your local travel agent before all the seats are gone. But, before you purchase a return ticket keep in mind the following:

Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan, has a thick atmosphere, organic-rich chemistry and a surface shaped by rivers and lakes of liquid ethane and methane. Cold winds sculpt vast regions of hydrocarbon-rich dunes. There may even be cryovolcanoes of cold liquid water. NASA’s Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Image: Titan poster. Courtesy of NASA/JPL.
Send to Kindle

Another Glorious Hubble Image

This NASA/ESA Hubble Space Telescope image shows the spiral galaxy NGC 4845, located over 65 million light-years away in the constellation of Virgo (The Virgin). The galaxy’s orientation clearly reveals the galaxy’s striking spiral structure: a flat and dust-mottled disc surrounding a bright galactic bulge. NGC 4845’s glowing centre hosts a gigantic version of a black hole, known as a supermassive black hole. The presence of a black hole in a distant galaxy like NGC 4845 can be inferred from its effect on the galaxy’s innermost stars; these stars experience a strong gravitational pull from the black hole and whizz around the galaxy’s centre much faster than otherwise. From investigating the motion of these central stars, astronomers can estimate the mass of the central black hole — for NGC 4845 this is estimated to be hundreds of thousands times heavier than the Sun. This same technique was also used to discover the supermassive black hole at the centre of our own Milky Way — Sagittarius A* — which hits some four million times the mass of the Sun (potw1340a). The galactic core of NGC 4845 is not just supermassive, but also super-hungry. In 2013 researchers were observing another galaxy when they noticed a violent flare at the centre of NGC 4845. The flare came from the central black hole tearing up and feeding off an object many times more massive than Jupiter. A brown dwarf or a large planet simply strayed too close and was devoured by the hungry core of NGC 4845.

The Hubble Space Telescope captured this recent image of spiral galaxy NGC 4845. The galaxy lies around 65 million light-years from Earth, but it still presents a gorgeous sight. NGC 4845’s glowing center hosts a supermassive, and super hungry, black hole.

Thanks NASA, but I just wish you would give these galaxies more memorable names.

Image: NASA/ESA Hubble Space Telescope image shows the spiral galaxy NGC 4845, located over 65 million light-years away in the constellation of Virgo. Courtesy: ESA/Hubble & NASA and S. Smartt (Queen’s University Belfast).

Send to Kindle

H2O and IQ

There is great irony in NASA’s recent discovery of water flowing on Mars.

First, that the gift of our intelligence allows us to make such amazing findings on other worlds while we use the same brain cells to enable the rape and pillage of our own.


Second, the meager seasonal trickles of liquid on the martian surface show us a dire possible future for our own planet.


From the Guardian:

Evidence for flowing water on Mars: this opens up the possibility of life, of wonders we cannot begin to imagine. Its discovery is an astonishing achievement. Meanwhile, Martian scientists continue their search for intelligent life on Earth.

We may be captivated by the thought of organisms on another planet, but we seem to have lost interest in our own. The Oxford Junior Dictionary has been excising the waymarks of the living world. Adders, blackberries, bluebells, conkers, holly, magpies, minnows, otters, primroses, thrushes, weasels and wrens are now surplus to requirements.

In the past four decades, the world has lost 50% of its vertebrate wildlife. But across the latter half of this period, there has been a steep decline in media coverage. In 2014, according to a study at Cardiff University, there were as many news stories broadcast by the BBC and ITV about Madeleine McCann (who went missing in 2007) as there were about the entire range of environmental issues.

Think of what would change if we valued terrestrial water as much as we value the possibility of water on Mars. Only 3% of the water on this planet is fresh; and of that, two-thirds is frozen. Yet we lay waste to the accessible portion. Sixty per cent of the water used in farming is needlessly piddled away by careless irrigation. Rivers, lakes and aquifers are sucked dry, while what remains is often so contaminated that it threatens the lives of those who drink it. In the UK, domestic demand is such that the upper reaches of many rivers disappear during the summer. Yet still we install clunky old toilets and showers that gush like waterfalls.

As for salty water, of the kind that so enthrals us when apparently detected on Mars, on Earth we express our appreciation with a frenzy of destruction. A new report suggests fish numbers have halved since 1970. Pacific bluefin tuna, which once roamed the seas in untold millions, have been reduced to an estimated 40,000, yet still they are pursued. Coral reefs are under such pressure that most could be gone by 2050. And in our own deep space, our desire for exotic fish rips through a world scarcely better known to us than the red planet’s surface. Trawlers are now working at depths of 2,000 metres. We can only guess at what they could be destroying.

A few hours before the Martian discovery was announced, Shell terminated its Arctic oil prospecting in the Chukchi Sea. For the company’s shareholders, it’s a minor disaster: the loss of $4bn; for those who love the planet and the life it sustains, it is a stroke of great fortune. It happened only because the company failed to find sufficient reserves. Had Shell succeeded, it would have exposed one of the most vulnerable places on Earth to spills, which are almost inevitable where containment is almost impossible. Are we to leave such matters to chance?

At the beginning of September, two weeks after he granted Shell permission to drill in the Chukchi Sea, Barack Obama travelled to Alaska to warn Americans about the devastating effects that climate change caused by the burning of fossil fuels could catalyse in the Arctic. “It’s not enough just to talk the talk”, he told them. “We’ve got to walk the walk.” We should “embrace the human ingenuity that can do something about it”. Human ingenuity is on abundant display at Nasa, which released those astounding images. But not when it comes to policy.

Let the market decide: this is the way in which governments seek to resolve planetary destruction. Leave it to the conscience of consumers, while that conscience is muted and confused by advertising and corporate lies. In a near-vacuum of information, we are each left to decide what we should take from other species and other people, what we should allocate to ourselves or leave to succeeding generations. Surely there are some resources and some places – such as the Arctic and the deep sea – whose exploitation should simply stop?

Read the entire article here.

Images: Lake Oroville, California, Earth, courtesy of U.S. Drought Portal. Recurring slope lineae, Mars, courtesy of NASA/JPL.

Send to Kindle

MondayMap: Our Beautiful Blue Home

OK, OK, I cheated a little this week. I don’t have a map story.

But I couldn’t resist posting the geographic-related news of NASA’s new website. Each day, the agency will post a handful of images of our gorgeous home, as seen from the DSCOVR spacecraft. DSCOVR is parked at the L-1 Lagrangian Point, about 1 million miles from Earth and 92 million from the Sun, where the gravitational forces of the three bodies balance. It’s a wonderful vantage point to peer at our beautiful blue planet.


You can check out NASA’s new website here.

Image: Earth as imaged from DSCOVR on October 19, 2015. Courtesy of NASA, NOAA and the U.S Air Force.

Send to Kindle

From a Million Miles


The Deep Space Climate Observatory (DSCOVR) spacecraft is now firmly in place about one million miles from Earth at its L1 (Legrange) point, a focus of gravitational balance between the sun and our planet. Jointly operated by NASA, NOAA (National Oceanic and Atmospheric Administration) and the U.S. Air Force, the spacecraft uses its digital optics to observe the Earth from sunrise to sunset. Researchers use its observations to measure a number of climate variables including ozone, aerosols, cloud heights, dust, and volcanic ash. The spacecraft also monitors the sun’s solar wind. Luckily, it also captures gorgeous images like the one above from July 16, 2015, of the moon, with dark side visible, as it transits over the Pacific Ocean.

Learn more about DSCOVR here.

Image: This image shows the far side of the moon, illuminated by the sun, as it crosses between the DSCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth. Courtesy: NASA, NOAA.

Send to Kindle

Europa Here We Come


With the the European Space Agency’s (ESA) Philae lander firmly rooted to a comet, NASA’s Dawn probe orbiting dwarf planet Ceres and its New Horizon’s spacecraft hurtling towards Pluto and Charon it would seem that we are doing lots of extraterrestrial exploration lately. Well, this is exciting, but for arm-chair explorers like myself this is still not enough. So, three cheers to NASA for giving a recent thumbs up to their next great mission — Europa Multi Flyby — to Jupiter’s moon, Europa.

Development is a go! But we’ll have to wait until the mid-2020s for lift-off. And, better yet, ESA has a mission to Europa planned for launch in 2022. Can’t wait — it looks spectacular.

From ars technica:

Get ready, we’re going to Europa! NASA’s plan to send a spacecraft to explore Jupiter’s moon just passed a major hurdle. The mission, planned for the 2020s, now has NASA’s official stamp of approval and was given the green light to move from concept phase to development phase.

Formerly known as Europa Clipper, the mission will temporarily be referred to as the Europa Multi Flyby Mission until it is given an official name. The current mission plan would include 45 separate flybys around the moon while orbiting Jupiter every two weeks. “We are taking an exciting step from concept to mission in our quest to find signs of life beyond Earth,” John Grunsfeld, associate administrator for NASA’s Science Mission Directorate, said in a press release.

Since Galileo first turned a spyglass up to the skies and discovered the Jovian moon, Europa has been a world of intrigue. In the 1970s, we received our first look at Europa through the eyes of Pioneer 10 and 11, followed closely by the twin Voyager satellites in the 1980s. Their images provided the first detailed view of the Solar System’s smoothest body. These photos also delivered evidence that the moon might be harboring a subsurface ocean. In the mid 1990s, the Galileo spacecraft gave us the best view to-date of Europa’s surface.

“Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity’s most profound questions,” Grunsfeld said. “Mainly, is there life beyond Earth?”

Sending a probe to explore Jupiter’s icy companion will help scientists in the search for this life. If Europa can support microbial life, other glacial moons such as Enceladus might as well.

Water, chemistry, and energy are three components essential to the presence of life. Liquid water is present throughout the Solar System, but so far the only world known to support life is Earth. Scientists think that if we follow the water, we may find evidence of life beyond Earth.

However, water alone will not support life; the right combination of ingredients is key. This mission to Europa will explore the moon’s potential habitability as opposed to outright looking for life.

When we set out to explore new worlds, we do it in phases. First we flyby, then we send robotic landers, and then we send people. This three-step process is how we, as humans, have explored the Moon and how we are partly through the process of exploring Mars.

The flyby of Europa will be a preliminary mission with four objectives: explore the ice shell and subsurface ocean; determine the composition, distribution, and chemistry of various compounds and how they relate to the ocean composition; map surface features and determine if there is current geologic activity; characterize sites to determine where a future lander might safely touch down.

Europa, at 3,100 kilometers wide (1,900 miles), is the sixth largest moon in the Solar System. It has a 15 to 30 kilometer (9 to 18 mile) thick icy outer crust that covers a salty subsurface ocean. If that ocean is in contact with Europa’s rocky mantle, a number of complex chemical reactions are possible. Scientists think that hydrothermal vents lurk on the seafloor, and, just like the vents here on Earth, they could support life.

The Galileo orbiter taught us most of what we know about Europa through 12 flybys of the icy moon. The new mission is scheduled to conduct approximately 45 flybys over a 2.5-year period, providing even more insight into the moon’s habitability.

Read the article here.

Image: Europa. Europa is Jupiter’s sixth-closest moon, and the sixth-largest moon in the Solar System. Courtesy of NASA.

Send to Kindle

An Eleven Year Marathon

While 11 years is about how long my kids suggest it would take me to run a marathon, this marathon is entirely other-worldly. It’s taken NASA’s Opportunity rover this length of time to cover just over 26 miles. It may seem like an awfully long time to cover that short distance, but think of all the rest stops — for incredible scientific discovery — along the way.

Check out a time-lapse that compresses Opportunity’s incredible martian journey into a mere 8 minutes.

Video courtesy of NASA / JPL.

Send to Kindle

Earth 2.0: Kepler 452b


On July 23, 2015 NASA announced discovery of Kepler 452b, an Earth-like exoplanet, which they dubbed Earth 2.0. Found following a four-year trawl through data from the Kepler exoplanet-hunting space telescope, Kepler 452b is the closest exoplanet yet in its resemblance to Earth. It revolves around its sun-like home star in 380 days at a distance similar to that between Earth and our sun (93 million miles).

Unfortunately, Kepler 452b is a “mere” 1,400 light years away — so you can forget trying to strike up a real-time conversation with any of its intelligent inhabitants. If it does harbor life I have to hope that any sentient lifeforms have taken better care of their home than we earthlings do of our own. Then again, it may be better that the exoplanet hosts only non-intelligent life!

Here’s NASA’s technical paper.

Check out NASA’s briefing here.

Image: Artist rendition of Kepler 452b. Courtesy of NASA. Public Domain.

Send to Kindle

Hello Pluto


Today NASA’s New Horizons spacecraft reached the (dwarf) planet Pluto and its five moons. After a 9.5 year voyage covering around 3 billion miles, the refrigerator-sized probe has finally reached its icy target. Unfortunately, New Horizons is traveling so quickly it will not enter orbit around Pluto but continue its 30,000 mph trek into interstellar space. The images, and science, that the craft will stream back to Earth over the coming months should be spectacular.

Check out more on the New Horizon’s mission here.

Image: Pluto as imaged by New Horizons, last image prior to its closest approach on July 14, 2015. Images courtesy of NASA.

Send to Kindle

Exotic Exoplanets Await Your Arrival


Vintage travel posters from the late 1890s through to the 1950s colorfully captured the public’s imagination. Now, not to be outdone by the classic works from the Art Nouveau and Art Deco periods, NASA has published a series of its own. But, these posters go beyond illustrating alpine ski resorts, sumptuous hotels and luxurious cruises. Rather, NASA has its sights on exotic and very distant travels — from tens to hundreds of millions of light-years. One such spot is the destination Kepler-16.

Kepler-16 A/B is a binary star system in the constellation of Cygnus that was targeted for analysis by the Kepler exoplanet hunting spacecraft. The star system is home to a Saturn-sized planet Kepler 16b orbiting the red dwarf star, Kepler 16-B, and  is 196 light-years from Earth.

See more of NASA’s travel posters here.


Send to Kindle

NASA’s 30-Year Roadmap

NASA-logoWhile NASA vacillates over any planned manned missions back to the Moon or to the Red Planet, the agency continues to think ahead. Despite perennial budget constraints and severe cuts NASA still has some fascinating plans for unmanned exploration of our solar system and beyond to the very horizon of the visible universe.

In its latest 30 year roadmap, NASA maps out its long-term goals, which include examining the atmospheres of exoplanets, determining the structure of neutron stars and tracing the history of galactic formation.

Download the NASA roadmap directly from NASA here.

From Technology Review:

The past 30 years has seen a revolution in astronomy and our understanding of the Universe. That’s thanks in large part to a relatively small number of orbiting observatories that have changed the way we view our cosmos.

These observatories have contributed observations from every part of the electromagnetic spectrum, from NASA’s Compton Gamma Ray Observatory at the very high energy end to HALCA, a Japanese 8-metre radio telescope at the low energy end.  Then there is the Hubble Space Telescope in the visible part of the spectrum, arguably the greatest telescope in history.

It’s fair to say that these  observatories have had a profound effect not just on science , but on the history of humankind.

So an interesting question is: what next?  Today, we find out, at least as far as NASA is concerned, with the publication of the organisation’s roadmap for astrophysics over the next 30 years. The future space missions identified in this document will have a profound influence on the future of astronomy but also on the way imaging technology develops in general.

So what has NASA got up its sleeve? To start off with, it says its goal in astrophysics is to answer three questions: Are we alone? How did we get here? And how does our universe work?

So let’s start with the first question. Perhaps the most important discovery in astronomy in recent years is that the Milky Way is littered with planets, many of which must have conditions ripe for life. So it’s no surprise that NASA aims first to understand the range of planets that exist and the types of planetary systems they form.

The James Webb Space Telescope, Hubble’s successor due for launch in 2018, will study the atmospheres of exoplanets, along with the Large UV Optical IR (LUVOIR) Surveyor due for launch in the 2020s. Together, these telescopes may produce results just as spectacular as Hubble’s.

To complement the Kepler mission, which has found numerous warm planets orbiting all kinds of stars, NASA is also planning the WFIRST-AFTA mission which will look for cold, free-floating planets using gravitational lensing. That’s currently scheduled for launch in the mid 2020s.

Beyond that, NASA hopes to build an ExoEarth Mapper mission that combines the observations from several large optical space telescopes to produce the first resolved images of other Earths. “For the first time, we will identify continents and oceans—and perhaps the signatures of life—on distant worlds,” says the report.

To tackle the second question—how did we get here?—NASA hopes to trace the origins of the first stars, star clusters and galaxies, again using JWST, LUVOIR and WFIRST-AXA. “These missions will also directly trace the history of galaxies and intergalactic gas through cosmic time, peering nearly 14 billion years into the past,” it says.

And to understand how the universe works, NASA hopes to observe the most extreme events in the universe, by peering inside neutron stars, observing the collisions of black holes and even watching the first nanoseconds of time. Part of this will involve an entirely new way to observe the universe using gravitational waves (as long as today’s Earth-based gravitational wave detectors finally spot something of interest).

The technology challenges in all this will be immense. NASA needs everything from bigger, lighter optics and extremely high contrast imaging devices to smart materials and micro-thrusters with unprecedented positioning accuracy.

One thing NASA’s roadmap doesn’t mention though is money and management—the two thorniest issues in the space business. The likelihood is that NASA will not have to sweat too hard for the funds it needs to carry out these missions. Much more likely is that any sleep lost will be over the type of poor management and oversight that has brought many a multibillion dollar mission to its knees.

Read the entire article here.

Image: NASA logo. Courtesy of NASA / Wikipedia.

Send to Kindle

Water in Them Thar Hills

Curiosity, the latest rover to explore Mars, has found lots of water in the martian soil. Now, it doesn’t run freely, but is chemically bound to other substances. Yet the large volume of H2O bodes well for future human exploration (and settlement).

From the Guardian:

Water has been discovered in the fine-grained soil on the surface of Mars, which could be a useful resource for future human missions to the red planet, according to measurements made by Nasa’s Curiosity rover.

Each cubic foot of Martian soil contains around two pints of liquid water, though the molecules are not freely accessible, but rather bound to other minerals in the soil.

The Curiosity rover has been on Mars since August 2012, landing in an area near the equator of the planet known as Gale Crater. Its target is to circle and climb Mount Sharp, which lies at the centre of the crater, a five-kilometre-high mountain of layered rock that will help scientists unravel the history of the planet.

On Thursday Nasa scientists published a series of five papers in the journal Science, which detail the experiments carried out by the various scientific instruments aboard Curiosity in its first four months on the martian surface. Though highlights from the year-long mission have been released at conferences and Nasa press conferences, these are the first set of formal, peer-reviewed results from the Curiosity mission.

“We tend to think of Mars as this dry place – to find water fairly easy to get out of the soil at the surface was exciting to me,” said Laurie Leshin, dean of science at Rensselaer Polytechnic Institute and lead author on the Science paper which confirmed the existence of water in the soil. “If you took about a cubic foot of the dirt and heated it up, you’d get a couple of pints of water out of that – a couple of water bottles’ worth that you would take to the gym.”

About 2% of the soil, by weight, was water. Curiosity made the measurement by scooping up a sample of the Martian dirt under its wheels, sieving it and dropping tiny samples into an oven in its belly, an instrument called Sample Analysis at Mars. “We heat [the soil] up to 835C and drive off all the volatiles and measure them,” said Leshin. “We have a very sensitive way to sniff those and we can detect the water and other things that are released.”

Aside from water, the heated soil released sulphur dioxide, carbon dioxide and oxygen as the various minerals within it were decomposed as they warmed up.

One of Curiosity’s main missions is to look for signs of habitability on Mars, places where life might once have existed. “The rocks and minerals are a record of the processes that have occurred and [Curiosity is] trying to figure out those environments that were around and to see if they were habitable,” said Peter Grindrod, a planetary scientist at University College London who was not involved in the analyses of Curiosity data.

Flowing water is once thought to have been abundant on the surface of Mars, but it has now all but disappeared. The only direct sources of water found so far have been as ice at the poles of the planet.

Read the entire article here.

Image: NASA’s Curiosity rover on the surface of Mars. Courtesy: Nasa/Getty Images

Send to Kindle

Cosmic portrait

Make a note in your calendar if you are so inclined: you’ll be photographed from space on July 19, 2013, sometime between 9.27 and 9.42 pm (GMT).

No, this is not another wacky mapping stunt courtesy of Google. Rather, NASA’s Cassini spacecraft, which will be somewhere in the vicinity of Saturn, will train its cameras on us for a global family portrait.

From NASA:

NASA’s Cassini spacecraft, now exploring Saturn, will take a picture of our home planet from a distance of hundreds of millions of miles on July 19. NASA is inviting the public to help acknowledge the historic interplanetary portrait as it is being taken.

Earth will appear as a small, pale blue dot between the rings of Saturn in the image, which will be part of a mosaic, or multi-image portrait, of the Saturn system Cassini is composing.

“While Earth will be only about a pixel in size from Cassini’s vantage point 898 million [1.44 billion kilometers] away, the team is looking forward to giving the world a chance to see what their home looks like from Saturn,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “We hope you’ll join us in waving at Saturn from Earth, so we can commemorate this special opportunity.”

Cassini will start obtaining the Earth part of the mosaic at 2:27 p.m. PDT (5:27 p.m. EDT or 21:27 UTC) and end about 15 minutes later, all while Saturn is eclipsing the sun from Cassini’s point of view. The spacecraft’s unique vantage point in Saturn’s shadow will provide a special scientific opportunity to look at the planet’s rings. At the time of the photo, North America and part of the Atlantic Ocean will be in sunlight.

Unlike two previous Cassini eclipse mosaics of the Saturn system in 2006, which captured Earth, and another in 2012, the July 19 image will be the first to capture the Saturn system with Earth in natural color, as human eyes would see it. It also will be the first to capture Earth and its moon with Cassini’s highest-resolution camera. The probe’s position will allow it to turn its cameras in the direction of the sun, where Earth will be, without damaging the spacecraft’s sensitive detectors.

“Ever since we caught sight of the Earth among the rings of Saturn in September 2006 in a mosaic that has become one of Cassini’s most beloved images, I have wanted to do it all over again, only better,” said Carolyn Porco, Cassini imaging team lead at the Space Science Institute in Boulder, Colo. “This time, I wanted to turn the entire event into an opportunity for everyone around the globe to savor the uniqueness of our planet and the preciousness of the life on it.”

Porco and her imaging team associates examined Cassini’s planned flight path for the remainder of its Saturn mission in search of a time when Earth would not be obstructed by Saturn or its rings. Working with other Cassini team members, they found the July 19 opportunity would permit the spacecraft to spend time in Saturn’s shadow to duplicate the views from earlier in the mission to collect both visible and infrared imagery of the planet and its ring system.

“Looking back towards the sun through the rings highlights the tiniest of ring particles, whose width is comparable to the thickness of hair and which are difficult to see from ground-based telescopes,” said Matt Hedman, a Cassini science team member based at Cornell University in Ithaca, N.Y., and a member of the rings working group. “We’re particularly interested in seeing the structures within Saturn’s dusty E ring, which is sculpted by the activity of the geysers on the moon Enceladus, Saturn’s magnetic field and even solar radiation pressure.”

This latest image will continue a NASA legacy of space-based images of our fragile home, including the 1968 “Earthrise” image taken by the Apollo 8 moon mission from about 240,000 miles (380,000 kilometers) away and the 1990 “Pale Blue Dot” image taken by Voyager 1 from about 4 billion miles (6 billion kilometers) away.

Read the entire article here.

Image: This simulated view from NASA’s Cassini spacecraft shows the expected positions of Saturn and Earth on July 19, 2013, around the time Cassini will take Earth’s picture. Cassini will be about 898 million miles (1.44 billion kilometers) away from Earth at the time. That distance is nearly 10 times the distance from the sun to Earth. Courtesy: NASA/JPL-Caltech

Send to Kindle

Off World Living

Will humanity ever transcend gravity to become a space-faring race? A simple napkin-based calculation will give you the answer.

From Scientific American:

Optimistic visions of a human future in space seem to have given way to a confusing mix of possibilities, maybes, ifs, and buts. It’s not just the fault of governments and space agencies, basic physics is in part the culprit. Hoisting mass away from Earth is tremendously difficult, and thus far in fifty years we’ve barely managed a total the equivalent of a large oil-tanker. But there’s hope.

Back in the 1970?s the physicist Gerard O’Neill and his students investigated concepts of vast orbital structures capable of sustaining entire human populations. It was the tail end of the Apollo era, and despite the looming specter of budget restrictions and terrestrial pessimism there was still a sense of what might be, what could be, and what was truly within reach.

The result was a series of blueprints for habitats that solved all manner of problems for space life, from artificial gravity (spin up giant cylinders), to atmospheres, and radiation (let the atmosphere shield you). They’re pretty amazing, and they’ve remained perhaps one of the most optimistic visions of a future where we expand beyond the Earth.

But there’s a lurking problem, and it comes down to basic physics. It is awfully hard to move stuff from the surface of our planet into orbit or beyond. O’Neill knew this, as does anyone else who’s thought of grand space schemes. The solution is to ‘live of the land’, extracting raw materials from either the Moon with its shallower gravity well, or by processing asteroids. To get to that point though we’d still have to loft an awful lot of stuff into space – the basic tools and infrastructure have to start somewhere.

And there’s the rub. To put it into perspective I took a look at the amount of ‘stuff’ we’ve managed to get off Earth in the past 50-60 years. It’s actually pretty hard to evaluate, lots of the mass we send up comes back down in short order – either as spent rocket stages or as short-lived low-altitude satellites. But we can still get a feel for it.

To start with, a lower limit on the mass hoisted to space is the present day artificial satellite population. Altogether there are in excess of about 3,000 satellites up there, plus vast amounts of small debris. Current estimates suggest this amounts to a total of around 6,000 metric tons. The biggest single structure is the International Space Station, currently coming in at about 450 metric tons (about 992,000 lb for reference).

These numbers don’t reflect launch mass – the total of a rocket + payload + fuel. To put that into context, a fully loaded Saturn V was about 2,000 metric tons, but most of that was fuel.

When the Space Shuttle flew it amounted to about 115 metric tons (Shuttle + payload) making it into low-Earth orbit. Since there were 135 launches of the Shuttle that amounts to a total hoisted mass of about 15,000 metric tons over a 30 year period.

Read the entire article after the jump.

Image: A pair of O’Neill cylinders. NASA ID number AC75-1085. Courtesy of NASA / Wikipedia.

Send to Kindle

Shedding Light on Dark Matter

Scientists are cautiously optimistic that results from a particle experiment circling the Earth onboard the International Space Station (ISS) hint at the existence of dark matter.

From Symmetry:

The space-based Alpha Magnetic Spectrometer experiment could be building toward evidence of dark matter, judging by its first result.

The AMS detector does its work more than 200 miles above Earth, latched to the side of the International Space Station. It detects charged cosmic rays, high-energy particles that for the most part originate outside our solar system.

The experiment’s first result, released today, showed an excess of antimatter particles—over the number expected to come from cosmic-ray collisions—in a certain energy range.

There are two competing explanations for this excess. Extra antimatter particles called positrons could be forming in collisions between unseen dark-matter particles and their antiparticles in space. Or an astronomical object such as a pulsar could be firing them into our solar system.

Luckily, there are a couple of ways to find out which explanation is correct.

If dark-matter particles are the culprits, the excess of positrons should sink suddenly above a certain energy. But if a pulsar is responsible, at higher energies the excess will only gradually disappear.

“The way they drop off tells you everything,” said AMS Spokesperson and Nobel laureate Sam Ting, in today’s presentation at CERN, the European center for particle physics.

The AMS result, to be published in Physical Review Letters on April 5, includes data from the energy range between 0.5 and 350 GeV. A graph of the flux of positrons over the flux of electrons and positrons takes the shape of a valley, dipping in the energy range between 0.5 to 10 GeV and then increasing steadily between 10 and 250 GeV. After that point, it begins to dip again—but the graph cuts off just before one can tell whether this is the great drop-off expected in dark matter models or the gradual fade-out expected in pulsar models. This confirms previous results from the PAMELA experiment, with greater precision.

Ting smiled slightly while presenting this cliffhanger, pointing to the empty edge of the graph. “In here, what happens is of great interest,” he said.

“We, of course, have a feeling what is happening,” he said. “But probably it is too early to discuss that.”

Ting kept mum about any data collected so far above that energy, telling curious audience members to wait until the experiment had enough information to present a statistically significant result.

“I’ve been working at CERN for many years. I’ve never made a mistake on an experiment,” he said. “And this is a very difficult experiment.”

A second way to determine the origin of the excess of positrons is to consider where they’re coming from. If positrons are hitting the detector from all directions at random, they could be coming from something as diffuse as dark matter. But if they are arriving from one preferred direction, they might be coming from a pulsar.

So far, the result leans toward the dark-matter explanation, with positrons coming from all directions. But AMS scientists will need to collect more data to say this for certain.

Read the entire article following the jump.

Image: Alpha Magnetic Spectrometer (AMS) detector latched on to the International Space Station. Courtesy of NASA / AMS-02.

Send to Kindle

Mars: 2030

Dennis Tito, the world’s first space tourist, would like to send a private space mission to Mars in 2018. He has pots of money and has founded a non-profit to gather partners and donors to get the mission off the ground. NASA has other plans. The U.S. space agency is tasked by the current administration to plan a human mission to Mars for the mid-2030s. However, due to budgetary issues, fiscal cliffs, and possible debt and deficit reduction, nobody believes it will actually happen. Though, many in NASA and lay-explorers at heart continue to hope.

From Technology Review:

In August, NASA used a series of precise and daring maneuvers to put a one-ton robotic rover named Curiosity on Mars. A capsule containing the rover parachuted through the Martian atmosphere and then unfurled a “sky crane” that lowered Curiosity safely into place. It was a thrilling moment: here were people communicating with a large and sophisticated piece of equipment 150 million miles away as it began to carry out experiments that should enhance our understanding of whether the planet has or has ever had life. So when I visited NASA’s Johnson Space Center in Houston a few days later, I expected to find people still basking in the afterglow. To be sure, the Houston center, where astronauts get directions from Mission Control, didn’t play the leading role in Curiosity. That project was centered at the Jet Propulsion Laboratory, which Caltech manages for NASA in Pasadena. Nonetheless, the landing had been a remarkable event for the entire U.S. space program. And yet I found that Mars wasn’t an entirely happy subject in Houston—especially among people who believe that humans, not only robots, should be exploring there.

In his long but narrow office in the main building of the sprawling Houston center, Bret Drake has compiled an outline explaining how six astronauts could be sent on six-month flights to Mars and what they would do there for a year and a half before their six-month flights home. Drake, 51, has been thinking about this since 1988, when he began working on what he calls the “exploration beyond low Earth orbit dream.” Back then, he expected that people would return to the moon in 2004 and be on the brink of traveling to Mars by now. That prospect soon got ruled out, but Drake pressed on: in the late 1990s he was crafting plans for human Mars missions that could take place around 2018. Today the official goal is for it to happen in the 2030s, but funding cuts have inhibited NASA’s ability to develop many of the technologies that would be required. In fact, progress was halted entirely in 2008 when Congress, in an effort to impose frugality on NASA, prohibited it from using any money to further the human exploration of Mars. “Mars was a four-letter dirty word,” laments Drake, who is deputy chief architect for NASA’s human spaceflight architecture team. Even though that rule was rescinded after a year, Drake knows NASA could perpetually remain 20 years away from a manned Mars mission.

If putting men on the moon signified the extraordinary things that technology made possible in the middle of the 20th century, sending humans to Mars would be the 21st-century version. The flight would be much more arduous and isolating for the astronauts: whereas the Apollo crews who went to the moon were never more than three days from home and could still make out its familiar features, a Mars crew would see Earth shrink into just one of billions of twinkles in space. Once they landed, the astronauts would have to survive in a freezing, windswept world with unbreathable air and 38 percent of Earth’s gravity. But if Drake is right, we can make this journey happen. He and other NASA engineers know what will be required, from a landing vehicle that could get humans through the Martian atmosphere to systems for feeding them, sheltering them, and shuttling them around once they’re there.

The problem facing Drake and other advocates for human exploration of Mars is that the benefits are mostly intangible. Some of the justifications that have been floated—including the idea that people should colonize the planet to improve humanity’s odds of survival—don’t stand up to an economic analysis. Until we have actually tried to keep people alive there, permanent human settlements on Mars will remain a figment of science fiction.

A better argument is that exploring Mars might have scientific benefits, because basic questions about the planet remain unanswered. “We know Mars was once wet and warm,” Drake says. “So did life ever arise there? If so, is it any different than life here on Earth? Where did it all go? What happened to Mars? Why did it become so cold and dry? How can we learn from that and what it may mean for Earth?” But right now Curiosity is exploring these very questions, firing lasers at rocks to determine their composition and hunting for signs of microbial life. Because of such robotic missions, our knowledge of Mars has improved so much in the past 15 years that it’s become harder to make the case for sending humans. People are far more adaptable and ingenious than robots and surely would find things drones can’t, but sending them would jack up the cost of a mission exponentially. “There’s just no real way to justify human exploration solely on the basis of science,” says Cynthia Phillips, a senior research scientist at the SETI Institute, which hunts for evidence of life elsewhere in the universe. “For the cost of sending one human to Mars, you could send an entire flotilla of robots.”

And yet human exploration of Mars has a powerful allure. No planet in our solar system is more like Earth. Our neighbor has rhythms we recognize as our own, with days slightly longer than 24 hours and polar ice caps that grow in the winter and shrink in the summer. Human explorers on Mars would profoundly expand the boundaries of human experience—providing, in the minds of many space advocates, an immeasurable benefit beyond science. “There have always been explorers in our society,” says Phillips. “If space exploration is only robots, you lose something, and you lose something really valuable.”

The Apollo Hangover

Mars was proposed as a place to explore even before the space program existed. In the 1950s, scientists such as Wernher von Braun (who had developed Nazi Germany’s combat rockets and later oversaw work on missiles and rockets for the United States) argued in magazines and on TV that as space became mankind’s next frontier, Mars would be an obvious point of interest. “Will man ever go to Mars?” von Braun wrote in Collier’s magazine in 1954. “I am sure he will—but it will be a century or more before he’s ready.”

Read the entire article after the jump.

Image: Artist’s conception of the Mars Excursion Module (MEM) proposed in a NASA Study in 1964. Courtesy of Dixon, Franklin P. Proceeding of the Symposium on Manned Planetary Missions: 1963/1964, Aeronutronic Divison of Philco Corp.

Send to Kindle

MondayMap: Quiet News Day = Map of the Universe

It was surely a quiet news day on March 21 2013 — most major online news outlets showed a fresh map of the Cosmic Microwave Background (CMB) on the front page. It was taken by the Planck Telescope, operated by the European Space Agency, over a period of 15 months. The image shows a landscape of primordial cosmic microwaves from when the universe was only around 380,000 years old, and is often referred to as “first light”.

From ESA:

Acquired by ESA’s Planck space telescope, the most detailed map ever created of the cosmic microwave background – the relic radiation from the Big Bang – was released today revealing the existence of features that challenge the foundations of our current understanding of the Universe.

The image is based on the initial 15.5 months of data from Planck and is the mission’s first all-sky picture of the oldest light in our Universe, imprinted on the sky when it was just 380 000 years old.

At that time, the young Universe was filled with a hot dense soup of interacting protons, electrons and photons at about 2700ºC. When the protons and electrons joined to form hydrogen atoms, the light was set free. As the Universe has expanded, this light today has been stretched out to microwave wavelengths, equivalent to a temperature of just 2.7 degrees above absolute zero.

This ‘cosmic microwave background’ – CMB – shows tiny temperature fluctuations that correspond to regions of slightly different densities at very early times, representing the seeds of all future structure: the stars and galaxies of today.

According to the standard model of cosmology, the fluctuations arose immediately after the Big Bang and were stretched to cosmologically large scales during a brief period of accelerated expansion known as inflation.

Planck was designed to map these fluctuations across the whole sky with greater resolution and sensitivity than ever before. By analysing the nature and distribution of the seeds in Planck’s CMB image, we can determine the composition and evolution of the Universe from its birth to the present day.

Overall, the information extracted from Planck’s new map provides an excellent confirmation of the standard model of cosmology at an unprecedented accuracy, setting a new benchmark in our manifest of the contents of the Universe.

But because precision of Planck’s map is so high, it also made it possible to reveal some peculiar unexplained features that may well require new physics to be understood.

“The extraordinary quality of Planck’s portrait of the infant Universe allows us to peel back its layers to the very foundations, revealing that our blueprint of the cosmos is far from complete. Such discoveries were made possible by the unique technologies developed for that purpose by European industry,” says Jean-Jacques Dordain, ESA’s Director General.

“Since the release of Planck’s first all-sky image in 2010, we have been carefully extracting and analysing all of the foreground emissions that lie between us and the Universe’s first light, revealing the cosmic microwave background in the greatest detail yet,” adds George Efstathiou of the University of Cambridge, UK.

One of the most surprising findings is that the fluctuations in the CMB temperatures at large angular scales do not match those predicted by the standard model – their signals are not as strong as expected from the smaller scale structure revealed by Planck.

Read the entire article after the jump.

Image: Cosmic microwave background (CMB) seen by Planck. Courtesy of ESA (European Space Agency).

Send to Kindle

Ziggy Stardust and the Spiders from the Moon?

To honor the brilliant new album by the Thin White Duke, we came across the article excerpted below, which at first glance seems to come directly from the songbook of Ziggy Stardust him- or herself. But closer inspection reveals that NASA may have designs on deploying giant manufacturing robots to construct a base on the moon. Can you hear me, Major Tom?

Once you’ve had your fill of Bowie, read on about NASA’s spiders.

From ars technica:

The first lunar base on the Moon may not be built by human hands, but rather by a giant spider-like robot built by NASA that can bind the dusty soil into giant bubble structures where astronauts can live, conduct experiments, relax or perhaps even cultivate crops.

We’ve already covered the European Space Agency’s (ESA) work with architecture firm Foster + Partners on a proposal for a 3D-printed moonbase, and there are similarities between the two bases—both would be located in Shackleton Crater near the Moon’s south pole, where sunlight (and thus solar energy) is nearly constant due to the Moon’s inclination on the crater’s rim, and both use lunar dust as their basic building material. However, while the ESA’s building would be constructed almost exactly the same way a house would be 3D-printed on Earth, this latest wheeze—SinterHab—uses NASA technology for something a fair bit more ambitious.

The product of joint research first started between space architects Tomas Rousek, Katarina Eriksson and Ondrej Doule and scientists from NASA’s Jet Propulsion Laboratory (JPL), SinterHab is so-named because it involves sintering lunar dust—that is, heating it up to just below its melting point, where the fine nanoparticle powders fuse and become one solid block a bit like a piece of ceramic. To do this, the JPL engineers propose using microwaves no more powerful than those found in a kitchen unit, with tiny particles easily reaching between 1200 and 1500 degrees Celsius.

Nanoparticles of iron within lunar soil are heated at certain microwave frequencies, enabling efficient heating and binding of the dust to itself. Not having to fly binding agent from Earth along with a 3D printer is a major advantage over the ESA/Foster + Partners plan. The solar panels to power the microwaves would, like the moon base itself, be based near or on the rim of Shackleton Crater in near-perpetual sunlight.

“Bubbles” of binded dust could be built by a huge six-legged robot (OK, so it’s not technically a spider) that can then be assembled into habitats large enough for astronauts to use as a base. This “Sinterator system” would use the JPL’s Athlete rover, a half-scale prototype of which has already been built and tested. It’s a human-controlled robotic space rover with wheels at the end of its 8.2m limbs and a detachable habitable capsule mounted at the top.

Athlete’s arms have several different functions, dependent on what it needs to do at any point. It has 48 3D cameras that stream video to its operator either inside the capsule, elsewhere on the Moon or back on Earth, it’s got a payload capacity of 300kg in Earth gravity, and it can scoop, dig, grab at and generally poke around in the soil fairly easily, giving it the combined abilities of a normal rover and a construction vehicle. It can even split into two smaller three-legged rovers at any time if needed. In the Sinterator system, a microwave 3D printer would be mounted on one of the Athlete’s legs and used to build the base.

Rousek explained the background of the idea to Wired.co.uk: “Since many of my buildings have advanced geometry that you can’t cut easily from sheet material, I started using 3D printing for rapid prototyping of my architecture models. The construction industry is still lagging several decades behind car and electronics production. The buildings now are terribly wasteful and imprecise—I have always dreamed about creating a factory where the buildings would be robotically mass-produced with parametric personalization, using composite materials and 3D printing. It would be also great to use local materials and precise manufacturing on-site.”

Read the entire article after the jump.

Image: Giant NASA spider robots could 3D print lunar base using microwaves, courtesy of Wired UK. Video: The Stars (Are Out Tonight), courtesy of David Bowie, ISO Records / Columbia Records.

Send to Kindle

Distance to Europa: $2 billion and 14 years

Europa is Jupiter’s gravitationally tortured moon. It has liquid oceans underneath an icy surface. This makes Europa a very interesting target for future missions to the solar system — missions looking for life beyond our planet. Unfortunately, NASA’s planned mission has yet to be funded. But should the agency (and taxpayers) come up with the estimated $2 billion to fund a spacecraft, we could well have a probe circling Europa by 2027.

From the Guardian:

Nasa scientists have drawn up plans for a mission that could look for life on Europa, a moon of Jupiter that is covered in vast oceans of water under a thick layer of ice.

The Europa Clipper would be the first dedicated mission to the waterworld moon, if it gets approval for funding from Nasa. The project is set to cost $2bn.

“On Earth, everywhere where there’s liquid water, we find life,” said Robert Pappalardo, a senior research scientist at Nasa’s jet propulsion laboratory in California, who led the design of the Europa Clipper.

“The search for life in our solar system somewhat equates to the search for liquid water. When we ask the question where are the water worlds, we have to look to the outer solar system because there are oceans beneath the icy shells of the moons.”

Jupiter’s biggest moons such as Ganymede, Callisto and Europa are too far from the sun to gain much warmth from it, but have liquid oceans beneath their blankets of ice because the moons are squeezed and warmed up as they orbit the planet.

“We generally focus down on Europa as the most promising in terms of potential habitability because of its relatively thick ice shell, an ocean that is in contact with rock below, and that it’s probably geologically active today,” Pappalardo said at the annual meeting of the American Association for the Advancement of Science in Boston.

In addition, because Europa is bombarded by extreme levels of radiation, the moon is likely to be covered in oxidants at its surface. These molecules are created when water is ripped apart by energetic radiation and could be used by lifeforms as a type of fuel.

For several years scientists have been considering plans for a spacecraft that could orbit Europa, but this turned out to be too expensive for Nasa’s budgets. Over the past year Pappalardo has worked with colleagues at the applied physics lab at Johns Hopkins University to come up with the Europa Clipper.

The spacecraft would orbit Jupiter and make several flybys of Europa, in the same way that the successful Cassini probe did for Saturn’s moon Titan.

“That way we can get effectively global coverage of Europa – not quite as good as an orbiter but not bad for half the cost . We have a validated cost of $2bn over the lifetime of the mission, excluding the launch,” Pappalardo said.

A probe could be readied in time for launch around 2021 and would take between three to six years to arrive at Europa, depending on the rockets used.

Read the entire article after the jump.

Image: Complex and beautiful patterns adorn the icy surface of Jupiter’s moon Europa, as seen in this color image intended to approximate how the satellite might appear to the human eye. Image Credit: NASA/JPL/Ted Stryk.

Send to Kindle

Fly Me to the Moon: Mere Millionaries Need Not Apply

Golden Spike, a Boulder Colorado based company, has an interesting proposition for the world’s restless billionaires. It is offering a two-seat trip to the Moon, and back, for a tidy sum of $1.5 billion. And, the company is even throwing in a moon-walk. The first trip is planned for 2020.

From the Washington Post:

It had to happen: A start-up company is offering rides to the moon. Book your seat now — though it’s going to set you back $750 million (it’s unclear if that includes baggage fees).

At a news conference scheduled for Thursday afternoon in Washington, former NASA science administrator Alan Stern plans to announce the formation of Golden Spike, which, according to a news release, is “the first company planning to offer routine exploration expeditions to the surface of the Moon.”

“We can do this,” an excited Stern said Thursday morning during a brief phone interview.

The gist of the company’s strategy is that it’ll repurpose existing space hardware for commercial lunar missions and take advantage of NASA-sanctioned commercial rockets that, in a few years, are supposed to put astronauts in low Earth orbit. Stern said a two-person lunar mission, complete with moonwalking and, perhaps best of all, a return to Earth, would cost $1.5 billion.

“Two seats, 750 each,” Stern said. “The trick is 40 years old. We know how to do this. The difference is now we have rockets and space capsules in the inventory. .?.?. They’re already developed. .?.?. We don’t have to invent them from a clean sheet of paper. We don’t have to start over.”

The statement says, “The company’s plan is to maximize use of existing rockets and to market the resulting system to nations, individuals, and corporations with lunar exploration objectives and ambitions.” Golden Spike says its plans have been vetted by a former space shuttle commander, a space shuttle program manager and a member of the National Academy of Engineering.

And Newt Gingrich is involved: The former speaker of the House, who was widely mocked this year when, campaigning for president, he talked at length about ambitious plans for a permanent moon base by 2021, is listed as a member of Golden Spike’s board of advisers.

Also on that list is Bill Richardson, the former New Mexico governor and secretary of the Department of Energy. The chairman of the board is Gerry Griffin, a former Apollo mission flight director and former director of NASA’s Johnson Space Center.

The private venture fills a void, as it were, in the wake of President Obama’s decision to cancel NASA’s Constellation program, which was initiated during the George W. Bush years as the next step in space exploration after the retirement of the space shuttle. Constellation aimed to put astronauts back on the moon by 2020 for what would become extended stays at a lunar base.

A sweeping review from a presidential committee led by retired aerospace executive Norman Augustine concluded that NASA didn’t have the money to achieve Constellation’s goals. The administration and Congress have given NASA new marching orders that require the building of a heavy-lift rocket that would give the agency the ability to venture far beyond low Earth orbit.

Routine access to space is being shifted to companies operating under commercial contracts. But as those companies try to develop commercial spaceflight, the United States lacks the ability to launch astronauts directly and must purchase flights to the international space station from the Russians.

Read the entire article after the jump.

Image courtesy of The Golden Spike Company.

Send to Kindle

Voyager: A Gift that Keeps on Giving

The little space probe that could — Voyager I — is close to leaving our solar system and entering the relative void of interstellar space. As it does so, from a distance of around 18.4 billion kilometers (today), it continues to send back signals of what it finds. And, surprises continue.

From ars technica:

Several years ago the Voyager spacecraft neared the edge of the Solar System, where the solar wind and magnetic field started to be influenced by the pressure from the interstellar medium that surrounds them. But the expected breakthrough to interstellar space appeared to be indefinitely put on hold; instead, the particles and magnetic field lines in the area seemed to be sending mixed signals about the Voyagers’ escape. At today’s meeting of the American Geophysical Union, scientists offered an explanation: the durable spacecraft ran into a region that nobody predicted.

The Voyager probes were sent on a grand tour of the outer planets over 35 years ago. After a series of staggeringly successful visits to the planets, the probes shot out beyond the most distant of them toward the edges of the Solar System. Scientists expected that as they neared the edge, we’d see the charge particles of the solar wind changing direction as the interstellar medium alters the direction of the Sun’s magnetic field. But while some aspects of the Voyager’s environment have changed, we’ve not seen any clear indication that it has left the Solar System. The solar wind actually seems to be grinding to a halt.

Today’s announcement clarifies that the confusion was caused by the fact that nature didn’t think much of physicists’ expectations. Instead, there’s an additional region near our Solar System’s boundary that hadn’t been predicted.

Within the Solar System, the environment is dominated by the solar magnetic field and a flow of charged particles sent out by the Sun (called the solar wind). Interstellar space has its own flow of particles in the form of low-energy cosmic rays, which the Sun’s magnetic field deflects away from us. There’s also an interstellar magnetic field with field lines oriented in different directions to our Sun’s.

Researchers expected the Voyagers would reach a relatively clear boundary between the Solar System and interstellar space. The Sun’s magnetic field would first shift directions, then be left behind and the interstellar one would be detected. At the same time, we’d see the loss of the solar wind and start seeing the first low-energy cosmic rays.

As expected, a few years back, the Voyagers reached a region where the interstellar medium forced the Sun’s magnetic field lines to curve north. But the solar wind refused to follow suit. Instead of flowing north, the solar wind slowed to a halt while the cosmic rays were missing in action.

Over the summer, as Voyager 1 approached 122 astronomical units from the Sun, that started to change. Arik Posner of the Voyager team said that, starting in late July, Voyager 1 detected a sudden drop in the presence of particles from the solar wind, which went down by half. At the same time, the first low-energy cosmic rays filtered in. A few days later things returned to normal. A second drop occurred on August 15 and then, on August 28, things underwent a permanent shift. According to Tom Krimigis, particles originating from the Sun dropped by about 1,000-fold. Low-energy cosmic rays rose and stayed elevated.

Read the entire article following the jump.

Image: Voyager II. Courtesy of NASA / JPL.

Send to Kindle

Integrated Space Plan

The Integrated Space Plan is a 100 year vision of space exploration as envisioned over 20 years ago. It is a beautiful and intricate timeline covering the period 1983 to 2100. The timeline was developed in 1989 by Ronald M. Jones at Rockwell International, using long range planning data from NASA, the National Space Policy Directive and other Western space agencies.

While optimistic the plan nonetheless outlined unmanned rover exploration on Mars (done), a comet sample return mission (done), and an orbiter around Mercury (done). Over the longer-term the plan foresaw “human expansion into the inner solar system” by 2018, with “triplanetary, earth-moon-mars infrastructure” in place by 2023, “small martian settlements” followed in 2060, and “Venus terraforming operations” in 2080. The plan concludes with “human interstellar travel” sometime after the year 2100. So, perhaps there is hope for humans beyond this Pale Blue Dot after all.

More below on this fascinating diagram and how it was re-discovered from Sean Ragan over at Make Magazine. A detailed and large download of the plan follows: Integrated Space Plan.

From Make:

I first encountered this amazing infographic hanging on a professor’s office wall when I was visiting law schools back in 1999. I’ve been trying, off and on, to run down my own copy ever since. It’s been one of those back-burner projects that I’ll poke at when it comes to mind, every now and again, but until quite recently all my leads had come up dry. All I really knew about the poster was that it had been created in the 80s by analysts at Rockwell International and that it was called the “Integrated Space Plan.”

About a month ago, all the little threads I’d been pulling on suddenly unraveled, and I was able to connect with a generous donor willing to entrust an original copy of the poster to me long enough to have it scanned at high resolution. It’s a large document, at 28 x 45?, but fortunately it’s monochrome, and reproduces well using 1-bit color at 600dpi, so even uncompressed bitmaps come in at under 5MB.

Read the entire article following the jump.

Send to Kindle

Engage the Warp Engines

According to Star Trek fictional history warp engines were invented in 2063. That gives us just over 50 years. While very unlikely based on our current technological prowess and general lack of understanding of the cosmos, warp engines are perhaps becoming just a little closer to being realized. But, please, no photon torpedoes!

From Wired:

NASA scientists now think that the famous warp drive concept is a realistic possibility, and that in the far future humans could regularly travel faster than the speed of light.

A warp drive would work by “warping” spacetime around any spaceship, which physicist Miguel Alcubierre showed was theoretically possible in 1994, albeit well beyond the current technical capabilities of humanity. However, any such Alcubierre drive was assumed to require more energy — equivalent to the mass-energy of the whole planet of Jupiter – than could ever possibly be supplied, rendering it impossible to build.

But now scientists believe that those requirements might not be so vast, making warp travel a tangible possibility. Harold White, from NASA’s Johnson Space Centre, revealed the news on Sept. 14 at the 100 Year Starship Symposium, a gathering to discuss the possibilities and challenges of interstellar space travel. Space.com reports that White and his team have calculated that the amount of energy required to create an Alcubierre drive may be smaller than first thought.

The drive works by using a wave to compress the spacetime in front of the spaceship while expanding the spacetime behind it. The ship itself would float in a “bubble” of normal spacetime that would float along the wave of compressed spacetime, like the way a surfer rides a break. The ship, inside the warp bubble, would be going faster than the speed of light relative to objects outside the bubble.

By changing the shape of the warp bubble from a sphere to more of a rounded doughnut, White claims that the energy requirements will be far, far smaller for any faster-than-light ship — merely equivalent to the mass-energy of an object the size of Voyager 1.

Alas, before you start plotting which stars you want to visit first, don’t expect one appearing within our lifetimes. Any warp drive big enough to transport a ship would still require vast amounts of energy by today’s standards, which would probably necessitate exploiting dark energy — but we don’t know yet what, exactly, dark energy is, nor whether it’s something a spaceship could easily harness. There’s also the issue that we have no idea how to create or maintain a warp bubble, let alone what it would be made out of. It could even potentially, if not constructed properly, create unintended black holes.

Read the entire article after the jump.

Image: U.S.S Enterprise D. Courtesy of Startrek.com.

Send to Kindle