Tag Archives: invention

None of Us Is As Smart As All of Us

Bob Taylor died on April 13, 2017 aged 85. An ordinary sounding name for someone who had a hand in founding almost every computing-related technology in the last 50 years.

Bob Taylor was a firm believer in the power of teamwork; one of his favorite proverbs was, “None of us is as smart as all of us”. And, the teams he was part of, and directed or funded, are stuff of Silicon Valley Legend. To name but a few:

In 1961, as a project manager at NASA, his support of computer scientist Douglas Engelbart, led to the invention of the computer mouse.

In 1966, at ARPA (Advanced Research Projects Agency) Taylor convinced his boss to spend half a million dollars on an experimental computer network. This became known as ARPAnet — the precursor to the Internet that we all live on today.

In 1972, now at Xerox PARC (Palo Alto Research Center) he and his teams of computer scientists ushered in the era of the personal computer. Some of the notable inventions at PARC during Taylor’s tenure include: the first true personal computer (Xerox Alto); windowed displays and graphical user interfaces, which led to the Apple Macintosh; Ethernet to connect networks of local computers; a communications protocol that later became TCP/IP, upon which runs most of today’s Internet traffic; hardware and software that led to the laser printer; and word and graphics processing tools that led engineers to develop PhotoShop and PageMaker (Adobe Systems) and Bravo, which later became Microsoft Word.

Read more about Bob Taylor’s unique and lasting legacy over at Wired.

Image: Bob Taylor, 2008. Credit: Gardner Campbell / Wikipedia. CC BY-SA 2.0.

A Tale of Frolicsome Engines

Al-Jazari-peacock-foundation

From the Public Domain Review comes a fascinating tale of hydraulic automata, mechanical monkeys, automatic organs and a host of other beautiful robotic inventions predating our current technological revolution by hundreds of years. These wonderful contraptions span the siphonic inventions of 1st-century-AD engineer Hero of Alexandria to the speaking machines and the chess playing mechanical Turk of Hungarian engineer Wolfgang von Kempelen from the late-1700s.

My favorite is the infamous “Defecating Duck”. Designed in the mid-18th century by Frenchman Jacques Vaucanson, the duck was one of the first simulative automata. The mechanical duck flapped its wings and moved much like its real world cousin, but its claim to fame was its ability to peck and swallow bits of food and excrete “droppings”.

More from Public Domain Review:

How old are the fields of robotics and artificial intelligence? Many might trace their origins to the mid-twentieth century, and the work of people such as Alan Turing, who wrote about the possibility of machine intelligence in the ‘40s and ‘50s, or the MIT engineer Norbert Wiener, a founder of cybernetics. But these fields have prehistories — traditions of machines that imitate living and intelligent processes — stretching back centuries and, depending how you count, even millennia.

The word “robot” made its first appearance in a 1920 play by the Czech writer Karel ?apek entitled R.U.R., for Rossum’s Universal Robots. Deriving his neologism from the Czech word “robota,” meaning “drudgery” or “servitude,” ?apek used “robot” to refer to a race of artificial humans who replace human workers in a futurist dystopia. (In fact, the artificial humans in the play are more like clones than what we would consider robots, grown in vats rather than built from parts.)

There was, however, an earlier word for artificial humans and animals, “automaton”, stemming from Greek roots meaning “self-moving”. This etymology was in keeping with Aristotle’s definition of living beings as those things that could move themselves at will. Self-moving machines were inanimate objects that seemed to borrow the defining feature of living creatures: self-motion. The first-century-AD engineer Hero of Alexandria described lots of automata. Many involved elaborate networks of siphons that activated various actions as the water passed through them, especially figures of birds drinking, fluttering, and chirping.

Read the entire article here.

Image: Illustration of the peacock fountain, from a 14th-century edition of Al-Jazari’s Book of Knowledge of Ingenious Mechanical Devices. Courtesy: Public Domain Review.

 

A Patent to End All Patents

You’ve seen the “we’ll help you file your patent application” infomercials on late night cable. The underlying promise is simple: your unique invention will find its way into every household on Earth and consequently will thrust you into the financial stratosphere making you the planet’s first gazillionaire. Of course, this will happen only after you part with your hard-earned cash for help in filing the patent. Incidentally, filing a patent with the US Patent and Trademark Office (USPTO) usually starts at around $10-15,000.

Some patents are truly extraordinary in their optimistic silliness: wind harnessing bicycle, apparatus for simulating a high-five, flatulence deodorizer, jet-powered surfboard, thong diaper, life-size interactive bowl of soup, nicotine infused coffee, edible business cards, magnetic rings to promote immortality, and so it goes. Remember, though, this is the United States, and most crazy things are possible and profitable. So, you could well find yourself becoming addicted to those 20oz nicotine infused lattes each time you pull up at the local coffee shop on your jet-powered surfboard.

But perhaps the most recent thoroughly earnest and whacky patent filing comes from Boeing no less. It’s for a laser-powered fusion-fission jet engine. The engine uses ultra-high powered lasers to fuse pellets of hydrogen, causing uranium to fission, which generates heat and subsequently electricity. All of this powering your next flight to Seattle. So, the next time you fly on a Boeing aircraft, keep in mind what some of the company’s engineers have in store for you 100 or 1,000 years from now. I think I’d prefer to be disassembled and beamed up.

From ars technica:

Assume the brace position: Boeing has received a patent for, I kid you not, a laser-powered fusion-fission jet propulsion system. Boeing envisions that this system could replace both rocket and turbofan engines, powering everything from spacecraft to missiles to airplanes.

The patent, US 9,068,562, combines inertial confinement fusion, fission, and a turbine that generates electricity. It sounds completely crazy because it is. Currently, this kind of engine is completely unrealistic given our mastery of fusion, or rather our lack thereof. Perhaps in the future (the distant, distant future that is), this could be a rather ingenious solution. For now, it’s yet another patent head-scratcher.

To begin with, imagine the silhouette of a big turbofan engine, like you’d see on a commercial jetliner. Somewhere in the middle of the engine there is a fusion chamber, with a number of very strong lasers focused on a single point. A hohlraum (pellet) containing a mix of deuterium and tritium (hydrogen isotopes) is placed at this focal point. The lasers are all turned on at the same instant, creating massive pressure on the pellet, which implodes and causes the hydrogen atoms to fuse. (This is called inertial confinement fusion, as opposed to the magnetic confinement fusion that is carried out in a tokamak.)

According to the patent, the hot gases produced by the fusion are pushed out of a nozzle at the back of the engine, creating thrust—but that’s not all! One of the by-products of hydrogen fusion is lots of fast neutrons. In Boeing’s patented design, there is a shield around the fusion chamber that’s coated with a fissionable material (uranium-238 is one example given). The neutrons hit the fissionable material, causing a fission reaction that generates lots of heat.

Finally, there’s some kind of heat exchanger system that takes the heat from the fission reaction and uses that heat (via a heated liquid or gas) to drive a turbine. This turbine generates the electricity that powers the lasers. Voilà: a fusion-fission rocket engine thing.

Let’s talk a little bit about why this is such an outlandish idea. To begin with, this patented design involves placing a lump of material that’s made radioactive in an airplane engine—and these vehicles are known to sometimes crash. Today, the only way we know of efficiently harvesting radioactive decay is a giant power plant, and we cannot get inertial fusion to fire more than once in a reasonable amount of time (much less on the short timescales needed to maintain thrust). This process requires building-sized lasers, like those found at the National Ignition Facility in California. Currently, the technique only works poorly. Those two traits are not conducive to air travel.

But this is the USA we’re talking about, where patents can be issued on firewalls (“being wielded in one of most outrageous trolling campaigns we have ever seen,” according to the EFF) and universities can claim such rights on “agent-based collaborative recognition-primed decision-making” (EFF: “The patent reads a little like what might result if you ate a dictionary filled with buzzwords and drank a bottle of tequila”). As far as patented products go, it is pretty hard to imagine this one actually being built in the real world. Putting aside the difficulties of inertial confinement fusion (we’re nowhere near hitting the break-even point), it’s also a bit far-fetched to shoehorn all of these disparate and rather difficult-to-work-with technologies into a small chassis that hangs from the wing of a commercial airplane.

Read the entire story here.

 

The Joy of New Technology

prosthetic-hand

We are makers. We humans love to create and invent. Some of our inventions are hideous, laughable or just plain evil — Twinkies, collateralized debt obligations and subprime mortgages, Agent Orange, hair extensions, spray-on tans, cluster bombs, diet water.

However, for every misguided invention comes something truly great. This time, a prosthetic hand that provides a sense of real feeling, courtesy of the makers of the Veterans Affairs Medical Center in Cleveland, Ohio.

From Technology Review:

Igor Spetic’s hand was in a fist when it was severed by a forging hammer three years ago as he made an aluminum jet part at his job. For months afterward, he felt a phantom limb still clenched and throbbing with pain. “Some days it felt just like it did when it got injured,” he recalls.

He soon got a prosthesis. But for amputees like Spetic, these are more tools than limbs. Because the prosthetics can’t convey sensations, people wearing them can’t feel when they have dropped or crushed something.Now Spetic, 48, is getting some of his sensation back through electrodes that have been wired to residual nerves in his arm. Spetic is one of two people in an early trial that takes him from his home in Madison, Ohio, to the Cleveland Veterans Affairs Medical Center. In a basement lab, his prosthetic hand is rigged with force sensors that are plugged into 20 wires protruding from his upper right arm. These lead to three surgically implanted interfaces, seven millimeters long, with as many as eight electrodes apiece encased in a polymer, that surround three major nerves in Spetic’s forearm.

On a table, a nondescript white box of custom electronics does a crucial job: translating information from the sensors on Spetic’s prosthesis into a series of electrical pulses that the interfaces can translate into sensations. This technology “is 20 years in the making,” says the trial’s leader, Dustin Tyler, a professor of biomedical engineering at Case Western Reserve University and an expert in neural interfaces.

As of February, the implants had been in place and performing well in tests for more than a year and a half. Tyler’s group, drawing on years of neuroscience research on the signaling mechanisms that underlie sensation, has developed a library of patterns of electrical pulses to send to the arm nerves, varied in strength and timing. Spetic says that these different stimulus patterns produce distinct and realistic feelings in 20 spots on his prosthetic hand and fingers. The sensations include pressing on a ball bearing, pressing on the tip of a pen, brushing against a cotton ball, and touching sandpaper, he says. A surprising side effect: on the first day of tests, Spetic says, his phantom fist felt open, and after several months the phantom pain was “95 percent gone.”

On this day, Spetic faces a simple challenge: seeing whether he can feel a foam block. He dons a blindfold and noise-­canceling headphones (to make sure he’s relying only on his sense of touch), and then a postdoc holds the block inside his wide-open prosthetic hand and taps him on the shoulder. Spetic closes his prosthesis—a task made possible by existing commercial interfaces to residual arm muscles—and reports the moment he touches the block: success.

Read the entire article here.

Image: Prosthetic hand. Courtesy of MIT Technology Review / Veterans Affairs Medical Center.

A Window that Vacuums Sound

We are all familiar with double-glazed windows that reduce transmission of sound by way of a partial vacuum between the two or more panes of glass. However, open a double-glazed window to let in some fresh air and the benefit of the sound reduction is gone. So, what if you could invent a window that lets in air but cuts out the noise pollution? Sounds impossible. But not to materials scientists Sang-Hoon Kim and Seong-Hyun Lee from South Korea.

From Technology Review:

Noise pollution is one of the bugbears of modern life. The sound of machinery, engines, neighbours and the like can seriously affect our quality of life and that of the other creatures that share this planet.

But insulating against sound is a difficult and expensive business. Soundproofing generally works on the principle of transferring sound from the air into another medium which absorbs and attenuates it.

So the notion of creating a barrier that absorbs sound while allowing the free of passage of air seems, at first thought, entirely impossible. But that’s exactly what Sang-Hoon Kima at the Mokpo National Maritime University in South Korea and Seong-Hyun Lee at the Korea Institute of Machinery and Materials, have achieved.

These guys have come up with a way to separate sound from the air in which it travels and then to attenuate it. This has allowed them to build a window that allows air to flow but not sound.

The design is relatively simple and relies on two exotic acoustic phenomenon. The first is to create a material with a negative bulk modulus.

A material’s bulk modulus is essentially its resistance to compression and this is an important factor in determining the speed at which sound moves through it. A material with a negative bulk modulus exponentially attenuates any sound passing through it.

However, it’s hard to imagine a solid material having a negative bulk modulus, which is where a bit of clever design comes in handy.

Kima and Lee’s idea is to design a sound resonance chamber in which the resonant forces oppose any compression. With careful design, this leads to a negative bulk modulus for a certain range of frequencies.

Their resonance chamber is actually very simple—it consists of two parallel plates of transparent acrylic plastic about 150 millimetres square and separated by 40 millimetres, rather like a section of double-glazing about the size of a paperback book.

This chamber is designed to ensure that any sound resonating inside it acts against the way the same sound compresses the chamber. When this happens the bulk modulus of the entire chamber is negative.

An important factor in this is how efficiently the sound can get into the chamber and here Kima and Lee have another trick. To maximise this efficiency, they drill a 50 millimetre hole through each piece of acrylic. This acts as a diffraction element causing any sound that hits the chamber to diffract strongly into it.

The result is a double-glazed window with a negative bulk modulus that strongly attenuates the sound hitting it.

Kima and Lee use their double-glazing unit as a building block to create larger windows. In tests with a 3x4x3 “wall” of building blocks, they say their window reduces sound levels by 20-35 decibels over a sound range of 700 Hz to 2,200 Hz. That’s a significant reduction.

And by using extra building blocks with smaller holes, they can extend this range to cover lower frequencies.

What’s handy about these windows is that holes through them also allow the free flow of air, giving ample ventilation as well.

Read the entire article here.

Biological Gears

We humans think they’re so smart. After all, we’ve invented, designed, built and continuously re-defined our surroundings. But, if we look closely at nature’s wonderful inventions we’ll find that it more often than not beat us to it. Now biologists have found insects with working gears.

[tube]sNw5FwNd4GU[/tube]

From New Scientist:

For a disconcerting experience, consider how mechanical you are. Humans may be conscious beings with higher feelings, but really we’re just fancy machines with joints, motors, valves, and a whole lot of plumbing.

All animals are the same. Hundreds of gizmos have evolved in nature, many of which our engineers merely reinvented. Nature had rotating axles billions of years ago, in the shape of bacterial flagella. And weevil legs beat us to the screw-and-nut mechanism.

The insect Issus coleoptratus is another animal with an unexpected bit of machinery hidden in its body. Its larvae are the first animals known to have interlocking gears, just like in the gearbox of a car.

In high gear

I. coleoptratus is a type of planthoppers – a group of insects known for their prodigious jumping. It takes off in just 2 milliseconds, and moves at 3.9 metres per second. “This is a phenomenal performance,” says Malcolm Burrows of the University of Cambridge. “How on earth do they do it?”

Burrows first ran into the larvae of I. coleoptratus in a colleague’s garden. “We were poking around and there were these bugs, jumping around like crazy.” He took a closer look, and noticed that each larva had meshing gears connecting its two hind legs. The gears had been seen before, by a German biologist called K. Sander, but his 1957 paper isn’t even on the internet.

The bulb at the top of each hind leg has 10 to 12 teeth, each between 15 and 30 micrometres long. Effectively, each hind leg is topped by a biological cog, allowing the pair to interlock, and move in unison.

Working with Gregory Sutton of the University of Bristol, UK, Burrows filmed the gears at 5000 frames per second and confirmed that they mesh with each other (see video, top).

Great timing

The two hind legs moved within 30 microseconds of each other during a jump. Burrows and Sutton suspect that the gears evolved because they can synchronise the leg movements better and faster than neurons can.

Other animals have gears, but not gears that mesh, says Chris Lyal of the Natural History Museum in London. “When you look at [I. coleoptratus‘s gears], you wonder, why can’t anything else do that?” he says.

The German study from 1957 claims that all 2000-odd planthoppers have gears. “I’ve looked at about half a dozen, and they all have them,” says Burrows. “I’d be hesitant to say no other animal has them,” says Burrows. “But they haven’t been described.”

Read the entire article here.

Video courtesy of New Scientist.