Tag Archives: listening

The Big Breakthrough Listen

If you were a Russian billionaire with money to burn and a penchant for astronomy and physics what would you do? Well, rather than spend it on a 1,000 ft long super-yacht, you might want to spend it on the search for extraterrestrial intelligence. That’s what Yuri Milner is doing. So, hats off to him and his colleagues.

Though, I do hope any far-distant aliens have similar, or greater, sums of cash to throw at equipment to transmit a signal so that we may receive it. Also, I have to wonder what alien oligarchs spend their excess millions and billions on — and what type of monetary system they use (hopefully not Euros).

From the Guardian:

Astronomers are to embark on the most intensive search for alien life yet by listening out for potential radio signals coming from advanced civilisations far beyond the solar system.

Leading researchers have secured time on two of the world’s most powerful telescopes in the US and Australia to scan the Milky Way and neighbouring galaxies for radio emissions that betray the existence of life elsewhere. The search will be 50 times more sensitive, and cover 10 times more sky, than previous hunts for alien life.

The Green Bank Observatory in West Virginia, the largest steerable telescope on the planet, and the Parkes Observatory in New South Wales, are contracted to lead the unprecedented search that will start in January 2016. In tandem, the Lick Observatory in California will perform the most comprehensive search for optical laser transmissions beamed from other planets.

Operators have signed agreements that hand the scientists thousands of hours of telescope time per year to eavesdrop on planets that orbit the million stars closest to Earth and the 100 nearest galaxies. The telescopes will scan the centre of the Milky Way and the entire length of the galactic plane.

Launched on Monday at the Royal Society in London, with the Cambridge cosmologist Stephen Hawking, the Breakthrough Listen project has some of the world’s leading experts at the helm. Among them are Lord Martin Rees, the astronomer royal, Geoff Marcy, who has discovered more planets beyond the solar system than anyone, and the veteran US astronomer Frank Drake, a pioneer in the search for extraterrestrial intelligence (Seti).

Stephen Hawking said the effort was “critically important” and raised hopes for answering the question of whether humanity has company in the universe. “It’s time to commit to finding the answer, to search for life beyond Earth,” he said. “Mankind has a deep need to explore, to learn, to know. We also happen to be sociable creatures. It is important for us to know if we are alone in the dark.”

The project will not broadcast signals into space, because scientists on the project believe humans have more to gain from simply listening out for others. Hawking, however, warned against shouting into the cosmos, because some advanced alien civilisations might possess the same violent, aggressive and genocidal traits found among humans.

“A civilisation reading one of our messages could be billions of years ahead of us. If so they will be vastly more powerful and may not see us as any more valuable than we see bacteria,” he said.

The alien hunters are the latest scientists to benefit from the hefty bank balance of Yuri Milner, a Russian internet billionaire, who quit a PhD in physics to make his fortune. In the past five years, Milner has handed out prizes worth tens of millions of dollars to physicists, biologists and mathematicians, to raise the public profile of scientists. He is the sole funder of the $100m Breakthrough Listen project.

“It is our responsibility as human beings to use the best equipment we have to try to answer one of the biggest questions: are we alone?” Milner told the Guardian. “We cannot afford not to do this.”

Milner was named after Yuri Gagarin, who became the first person to fly in space in 1961, the year he was born.

The Green Bank and Parkes observatories are sensitive enough to pick up radio signals as strong as common aircraft radar from planets around the nearest 1,000 stars. Civilisations as far away as the centre of the Milky Way could be detected if they emit radio signals more than 10 times the power of the Arecibo planetary radar on Earth. The Lick Observatory can pick up laser signals as weak as 100W from nearby stars 25tn miles away.

Read the entire story here.

Listening versus Snooping

Many of your mobile devices already know where you are and what you’re doing. Increasingly the devices you use will record your every step and every word (and those of any callers), and even know your mood and health status. Analysts and eavesdroppers at the U.S. National Security Agency (NSA) must be licking their collective their lips.

From Technology Review:

The Moto X, the new smartphone from Google’s Motorola Mobility, might be remembered best someday for helping to usher in the era of ubiquitous listening.

Unlike earlier phones, the Moto X includes two low-power chips whose only function is to process data from a microphone and other sensors—without tapping the main processor and draining the battery. This is a big endorsement of the idea that phones could serve you better if they did more to figure out what is going on (see “Motorola Reveals First Google-Era Phone”). For instance, you might say “OK Google Now” to activate Google’s intelligent assistant software, rather than having to first tap the screen or press buttons to get an audio-processing function up and running.

This brings us closer to having phones that continually monitor their auditory environment to detect the phone owner’s voice, discern what room or other setting the phone is in, or pick up other clues from background noise. Such capacities make it possible for software to detect your moods, know when you are talking and not to disturb you, and perhaps someday keep a running record of everything you hear.

“Devices of the future will be increasingly aware of the user’s current context, goals, and needs, will become proactive—taking initiative to present relevant information,” says Pattie Maes, a professor at MIT’s Media Lab. “Their use will become more integrated in our daily behaviors, becoming almost an extension of ourselves. The Moto X is definitely a step in that direction.”

Even before the Moto X, there were apps, such as the Shazam music-identification service, that could continually listen for a signal. When users enable a new feature called “auto-tagging” on a recent update to Shazam’s iPad app, Shazam listens to everything in the background, all the time. It’s seeking matches for songs and TV content that the company has stored on its servers, so you can go back and find information about something that you might have heard a few minutes ago. But the key change is that Shazam can now listen all the time, not just when you tap a button to ask it to identify something. The update is planned for other platforms, too.

But other potential uses abound. Tanzeem Choudury, a researcher at Cornell University, has demonstrated software that can detect whether you are talking faster than normal, or other changes in pitch or frequency that suggest stress. The StressSense app she is developing aims to do things like pinpoint the sources of your stress—is it the 9:30 a.m. meeting, or a call from Uncle Hank?

Similarly, audio analysis could allow the phone to understand where it is—and make fewer mistakes, says Vlad Sejnoha, the chief technology officer of Nuance Communications, which develops voice-recognition technologies. “I’m sure you’ve been in situation where someone has a smartphone in their pocket and suddenly a little voice emerges from the pocket, asking how they can be helped,” he says. That’s caused when an assistance app like Apple’s Siri is accidentally triggered. If the phone’s always-on ears could accurately detect the muffled acoustical properties of a pocket or purse, it could eliminate this false start and stop phones from accidentally dialing numbers as well. “That’s a work in progress,” Sejnoha says.  “And while it’s amusing, I think the general principle is serious: these devices have to try to understand the users’ world as much as possible.”

A phone might use ambient noise levels to decide how loud a ringtone should be: louder if you are out on the street, quiet if inside, says Chris Schmandt, director of the speech and mobility group at MIT’s Media Lab. Taking that concept a step further, a phone could detect an ambient conversation and recognize that one of the speakers was its owner. Then it might mute a potentially disruptive ringtone unless the call was from an important person, such as a spouse, Schmandt added.

Read the entire article here.

Hearing and Listening

Auditory neuroscientist Seth Horowitz guides us through the science of hearing and listening in his new book, “The Universal Sense: How Hearing Shapes the Mind.” He clarifies the important distinction between attentive listening with the mind and the more passive act of hearing, and laments the many modern distractions that threaten our ability to listen effectively.

[div class=attrib]From the New York Times:[end-div]

HERE’S a trick question. What do you hear right now?

If your home is like mine, you hear the humming sound of a printer, the low throbbing of traffic from the nearby highway and the clatter of plastic followed by the muffled impact of paws landing on linoleum — meaning that the cat has once again tried to open the catnip container atop the fridge and succeeded only in knocking it to the kitchen floor.

The slight trick in the question is that, by asking you what you were hearing, I prompted your brain to take control of the sensory experience — and made you listen rather than just hear. That, in effect, is what happens when an event jumps out of the background enough to be perceived consciously rather than just being part of your auditory surroundings. The difference between the sense of hearing and the skill of listening is attention.

Hearing is a vastly underrated sense. We tend to think of the world as a place that we see, interacting with things and people based on how they look. Studies have shown that conscious thought takes place at about the same rate as visual recognition, requiring a significant fraction of a second per event. But hearing is a quantitatively faster sense. While it might take you a full second to notice something out of the corner of your eye, turn your head toward it, recognize it and respond to it, the same reaction to a new or sudden sound happens at least 10 times as fast.

This is because hearing has evolved as our alarm system — it operates out of line of sight and works even while you are asleep. And because there is no place in the universe that is totally silent, your auditory system has evolved a complex and automatic “volume control,” fine-tuned by development and experience, to keep most sounds off your cognitive radar unless they might be of use as a signal that something dangerous or wonderful is somewhere within the kilometer or so that your ears can detect.

This is where attention kicks in.

Attention is not some monolithic brain process. There are different types of attention, and they use different parts of the brain. The sudden loud noise that makes you jump activates the simplest type: the startle. A chain of five neurons from your ears to your spine takes that noise and converts it into a defensive response in a mere tenth of a second — elevating your heart rate, hunching your shoulders and making you cast around to see if whatever you heard is going to pounce and eat you. This simplest form of attention requires almost no brains at all and has been observed in every studied vertebrate.

More complex attention kicks in when you hear your name called from across a room or hear an unexpected birdcall from inside a subway station. This stimulus-directed attention is controlled by pathways through the temporoparietal and inferior frontal cortex regions, mostly in the right hemisphere — areas that process the raw, sensory input, but don’t concern themselves with what you should make of that sound. (Neuroscientists call this a “bottom-up” response.)

But when you actually pay attention to something you’re listening to, whether it is your favorite song or the cat meowing at dinnertime, a separate “top-down” pathway comes into play. Here, the signals are conveyed through a dorsal pathway in your cortex, part of the brain that does more computation, which lets you actively focus on what you’re hearing and tune out sights and sounds that aren’t as immediately important.

In this case, your brain works like a set of noise-suppressing headphones, with the bottom-up pathways acting as a switch to interrupt if something more urgent — say, an airplane engine dropping through your bathroom ceiling — grabs your attention.

Hearing, in short, is easy. You and every other vertebrate that hasn’t suffered some genetic, developmental or environmental accident have been doing it for hundreds of millions of years. It’s your life line, your alarm system, your way to escape danger and pass on your genes. But listening, really listening, is hard when potential distractions are leaping into your ears every fifty-thousandth of a second — and pathways in your brain are just waiting to interrupt your focus to warn you of any potential dangers.

Listening is a skill that we’re in danger of losing in a world of digital distraction and information overload.

[div class=attrib]Read the entire article following the jump.[end-div]

[div class=attrib]Image: The Listener (TV series). Courtesy of Shaftsbury Films, CTV / Wikipedia.[end-div]