Tag Archives: neuromorphic

Neuromorphic Chips

Neuromorphic chips are here. But don’t worry these are not brain implants that you might expect to see in a William Gibson or Iain Banks novel. Neuromorphic processors are designed to simulate brain function, and learn or mimic certain types of human processes such as sensory perception, image processing and object recognition. The field is making tremendous advances, with companies like Qualcomm — better known for its mobile and wireless chips — leading the charge. Until recently complex sensory and mimetic processes had been the exclusive realm of supercomputers.

From Technology Review:

A pug-size robot named pioneer slowly rolls up to the Captain America action figure on the carpet. They’re facing off inside a rough model of a child’s bedroom that the wireless-chip maker Qualcomm has set up in a trailer. The robot pauses, almost as if it is evaluating the situation, and then corrals the figure with a snowplow-like implement mounted in front, turns around, and pushes it toward three squat pillars representing toy bins. Qualcomm senior engineer Ilwoo Chang sweeps both arms toward the pillar where the toy should be deposited. Pioneer spots that gesture with its camera and dutifully complies. Then it rolls back and spies another action figure, Spider-Man. This time Pioneer beelines for the toy, ignoring a chessboard nearby, and delivers it to the same pillar with no human guidance.

This demonstration at Qualcomm’s headquarters in San Diego looks modest, but it’s a glimpse of the future of computing. The robot is performing tasks that have typically needed powerful, specially programmed computers that use far more electricity. Powered by only a smartphone chip with specialized software, Pioneer can recognize objects it hasn’t seen before, sort them by their similarity to related objects, and navigate the room to deliver them to the right location—not because of laborious programming but merely by being shown once where they should go. The robot can do all that because it is simulating, albeit in a very limited fashion, the way a brain works.

Later this year, Qualcomm will begin to reveal how the technology can be embedded into the silicon chips that power every manner of electronic device. These “neuromorphic” chips—so named because they are modeled on biological brains—will be designed to process sensory data such as images and sound and to respond to changes in that data in ways not specifically programmed. They promise to accelerate decades of fitful progress in artificial intelligence and lead to machines that are able to understand and interact with the world in humanlike ways. Medical sensors and devices could track individuals’ vital signs and response to treatments over time, learning to adjust dosages or even catch problems early. Your smartphone could learn to anticipate what you want next, such as background on someone you’re about to meet or an alert that it’s time to leave for your next meeting. Those self-driving cars Google is experimenting with might not need your help at all, and more adept Roombas wouldn’t get stuck under your couch. “We’re blurring the boundary between silicon and biological systems,” says Qualcomm’s chief technology officer, Matthew Grob.

Qualcomm’s chips won’t become available until next year at the earliest; the company will spend 2014 signing up researchers to try out the technology. But if it delivers, the project—known as the Zeroth program—would be the first large-scale commercial platform for neuromorphic computing. That’s on top of promising efforts at universities and at corporate labs such as IBM Research and HRL Laboratories, which have each developed neuromorphic chips under a $100 million project for the Defense Advanced Research Projects Agency. Likewise, the Human Brain Project in Europe is spending roughly 100 million euros on neuromorphic projects, including efforts at Heidelberg University and the University of Manchester. Another group in Germany recently reported using a neuromorphic chip and software modeled on insects’ odor-processing systems to recognize plant species by their flowers.

Today’s computers all use the so-called von Neumann architecture, which shuttles data back and forth between a central processor and memory chips in linear sequences of calculations. That method is great for crunching numbers and executing precisely written programs, but not for processing images or sound and making sense of it all. It’s telling that in 2012, when Google demonstrated artificial-­intelligence software that learned to recognize cats in videos without being told what a cat was, it needed 16,000 processors to pull it off.

Continuing to improve the performance of such processors requires their manufacturers to pack in ever more, ever faster transistors, silicon memory caches, and data pathways, but the sheer heat generated by all those components is limiting how fast chips can be operated, especially in power-stingy mobile devices. That could halt progress toward devices that effectively process images, sound, and other sensory information and then apply it to tasks such as face recognition and robot or vehicle navigation.

No one is more acutely interested in getting around those physical challenges than Qualcomm, maker of wireless chips used in many phones and tablets. Increasingly, users of mobile devices are demanding more from these machines. But today’s personal-assistant services, such as Apple’s Siri and Google Now, are limited because they must call out to the cloud for more powerful computers to answer or anticipate queries. “We’re running up against walls,” says Jeff Gehlhaar, the Qualcomm vice president of technology who heads the Zeroth engineering team.

Neuromorphic chips attempt to model in silicon the massively parallel way the brain processes information as billions of neurons and trillions of synapses respond to sensory inputs such as visual and auditory stimuli. Those neurons also change how they connect with each other in response to changing images, sounds, and the like. That is the process we call learning. The chips, which incorporate brain-inspired models called neural networks, do the same. That’s why Qualcomm’s robot—even though for now it’s merely running software that simulates a neuromorphic chip—can put Spider-Man in the same location as Captain America without having seen Spider-Man before.

Read the entire article here.