# Your Ticket to the Past: Tipler Cylinder

So, you want to travel back in time? Here’s the solution. But first forget the tricked-out DeLorean and H.G. Wells’ victorian time machine. What you need is a Tipler Cylinder. Let’s begin with the ingredients if you are inclined to construct your very own cylinder.

1. Take a mass of about 10 times that of the Sun.
2. Compress and fashion the mass into an infinitely long, spaghetti-like cylinder.
3. Spin the cylinder, along its longitudinal axis, at least up to several billion revolutions per minute.

Once you’ve  done this all you need in a craft able to spiral around the cylinder — without getting crushed by gravity — to make use of its frame-dragging of spacetime. Voila! Do this correctly, and you might well emerge billions of years from where you began. But, you’ll be in the past, of course.

Send to Kindle

# The Real Rules for Time Travelers

From Discover:

People all have their own ideas of what a time machine would look like. If you are a fan of the 1960 movie version of H. G. Wells’s classic novel, it would be a steampunk sled with a red velvet chair, flashing lights, and a giant spinning wheel on the back. For those whose notions of time travel were formed in the 1980s, it would be a souped-up stainless steel sports car. Details of operation vary from model to model, but they all have one thing in common: When someone actually travels through time, the machine ostentatiously dematerializes, only to reappear many years in the past or future. And most people could tell you that such a time machine would never work, even if it looked like a DeLorean.

They would be half right: That is not how time travel might work, but time travel in some other form is not necessarily off the table. Since time is kind of like space (the four dimensions go hand in hand), a working time machine would zoom off like a rocket rather than disappearing in a puff of smoke. Einstein described our universe in four dimensions: the three dimensions of space and one of time. So traveling back in time is nothing more or less than the fourth-dimensional version of walking in a circle. All you would have to do is use an extremely strong gravitational field, like that of a black hole, to bend space-time. From this point of view, time travel seems quite difficult but not obviously impossible.

These days, most people feel comfortable with the notion of curved space-time. What they trip up on is actually a more difficult conceptual problem, the time travel paradox. This is the worry that someone could go back in time and change the course of history. What would happen if you traveled into the past, to a time before you were born, and murdered your parents? Put more broadly, how do we avoid changing the past as we think we have already experienced it? At the moment, scientists don’t know enough about the laws of physics to say whether these laws would permit the time equivalent of walking in a circle—or, in the parlance of time travelers, a “closed timelike curve.” If they don’t permit it, there is obviously no need to worry about paradoxes. If physics is not an obstacle, however, the problem could still be constrained by logic. Do closed timelike curves necessarily lead to paradoxes?

If they do, then they cannot exist, simple as that. Logical contradictions cannot occur. More specifically, there is only one correct answer to the question “What happened at the vicinity of this particular event in space-time?” Something happens: You walk through a door, you are all by yourself, you meet someone else, you somehow never showed up, whatever it may be. And that something is whatever it is, and was whatever it was, and will be whatever it will be, once and forever. If, at a certain event, your grandfather and grandmother were getting it on, that’s what happened at that event. There is nothing you can do to change it, because it happened. You can no more change events in your past in a space-time with closed timelike curves than you can change events that already happened in ordinary space-time, with no closed timelike curves.

More from theSource here.

Send to Kindle